Suppr超能文献

植物乙醛酸循环体苹果酸脱氢酶而非线粒体苹果酸脱氢酶无需伴侣蛋白协助就能折叠。

Plant glyoxysomal but not mitochondrial malate dehydrogenase can fold without chaperone assistance.

作者信息

Gietl C, Seidel C, Svendsen I

机构信息

Institute of Botany, Technical University of Munich, Germany.

出版信息

Biochim Biophys Acta. 1996 May 20;1274(1-2):48-58. doi: 10.1016/0005-2728(96)00009-6.

Abstract

Glyoxysomal (gMDH) and mitochondrial malate dehydrogenase (mMDH) from watermelon are synthesized as higher molecular weight precursor proteins. By overexpressing the precursor forms as well as the mature subunits with a histidine arm at the carboxy-terminus, it has been possible to purify relatively large amounts especially of the glyoxysomal precursor protein for studies of their refolding capacities after denaturation with guanidinium hydrochloride, heat or low pH. Glyoxysomal MDH and its precursor is capable of its spontaneous folding over a wide range of temperature conditions. Refolding can be enhanced by inclusion of BSA and ATP as stabilisers in the folding buffer. The N-terminal transit peptide of gMDH facilitates folding, but does not function as an intramolecular chaperon. Chemically denatured mitochondrial MDH requires chaperones for refolding. GroEL/GroES/ATP increase the yield and rate of watermelon mMDH folding dramatically while GroEL and Mg-ATP alone are not sufficient to provide folding assistance similar to the results with hydrophobic mammalian mMDH. The watermelon glyoxysomal MDH interacts with GroEL-like hydrophilic mammalian cytoplasmic MDH, a binding which has to be released by Mg-ATP before spontaneous folding can ensue. Interestingly, watermelon mMDH exhibited a much higher heat stability than gMDH or mammalian mMDH in the presence of BSA/ATP as well as GroEL/GroES/ATP. The differences between glyoxysomal and chaperone-assisted mitochondrial folding patterns are discussed.

摘要

西瓜的乙醛酸循环体苹果酸脱氢酶(gMDH)和线粒体苹果酸脱氢酶(mMDH)最初是以分子量更高的前体蛋白形式合成的。通过过量表达前体形式以及在羧基末端带有组氨酸臂的成熟亚基,得以纯化出相对大量的乙醛酸循环体前体蛋白,尤其是用于研究其在盐酸胍、加热或低pH值变性后的重折叠能力。乙醛酸循环体MDH及其前体在很宽的温度范围内都能自发折叠。在折叠缓冲液中加入牛血清白蛋白(BSA)和三磷酸腺苷(ATP)作为稳定剂可增强重折叠。gMDH的N端转运肽有助于折叠,但不充当分子内伴侣。化学变性的线粒体MDH重折叠需要伴侣蛋白。GroEL/GroES/ATP能显著提高西瓜mMDH的重折叠产量和速率,而单独的GroEL和Mg-ATP不足以提供类似于疏水性哺乳动物mMDH的折叠辅助,西瓜乙醛酸循环体MDH与类似GroEL的亲水性哺乳动物细胞质MDH相互作用,这种结合必须在Mg-ATP作用下释放后才能发生自发折叠。有趣的是,在存在BSA/ATP以及GroEL/GroES/ATP的情况下,西瓜mMDH表现出比gMDH或哺乳动物mMDH更高的热稳定性。文中讨论了乙醛酸循环体和伴侣蛋白辅助的线粒体折叠模式之间的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验