Suppr超能文献

通过三链螺旋形成和补骨脂素交联对超螺旋DNA进行序列特异性标记。

Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.

作者信息

Pfannschmidt C, Schaper A, Heim G, Jovin T M, Langowski J

机构信息

German Cancer Research Center, Heidelberg, Germany.

出版信息

Nucleic Acids Res. 1996 May 1;24(9):1702-9. doi: 10.1093/nar/24.9.1702.

Abstract

Site-specific labeling of covalently closed circular DNA was achieved by using triple helix-forming oligonucleotides 10, 11 and 27 nt in length. The sequences consisted exclusively of pyrimidines (C and T) with a reactive psoralen at the 5'-end and a biotin at the 3'-end. The probes were directed to different target sites on the plasmids pUC18 (2686 bp), pUC18/4A (2799 bp) and pUC1 8/4A-H 1 (2530 bp). After triple helix formation at acid pH the oligonucleotides were photocrosslinked to the target DNAs via the psoralen moiety, endowing the covalent adduct with unconditional stability, e.g. under conditions unfavorable for preservation of the triplex, such as neutral pH. Complex formation was monitored after polyacrylamide gel electrophoresis by streptavidin-alkaline phosphatase (SAP)-induced chemiluminescence. The yield of triple helix increased with the molar ratio of oligonucleotide to target and the length of the probe sequence (27mer > 11mer). The covalent adduct DNA were visualized by scanning force microscopy (SFM) using avidin or streptavidin as protein tags for the biotin group on the oligonucleotide probes. We discuss the versatility of triple helix DNA complexes for studying the conformation of superhelical DNA.

摘要

通过使用长度为10、11和27个核苷酸的三链螺旋形成寡核苷酸实现了共价闭合环状DNA的位点特异性标记。这些序列完全由嘧啶(C和T)组成,在5'端带有一个反应性补骨脂素,在3'端带有一个生物素。这些探针靶向质粒pUC18(2686 bp)、pUC18/4A(2799 bp)和pUC18/4A-H1(2530 bp)上的不同靶位点。在酸性pH下形成三链螺旋后,寡核苷酸通过补骨脂素部分与靶DNA进行光交联,使共价加合物具有无条件稳定性,例如在不利于三链体保存的条件下,如中性pH。通过链霉亲和素-碱性磷酸酶(SAP)诱导的化学发光在聚丙烯酰胺凝胶电泳后监测复合物的形成。三链螺旋的产率随着寡核苷酸与靶标的摩尔比以及探针序列的长度增加而增加(27聚体>11聚体)。使用抗生物素蛋白或链霉亲和素作为寡核苷酸探针上生物素基团的蛋白质标签,通过扫描力显微镜(SFM)观察共价加合物DNA。我们讨论了三链螺旋DNA复合物在研究超螺旋DNA构象方面的多功能性。

相似文献

1
Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.
Nucleic Acids Res. 1996 May 1;24(9):1702-9. doi: 10.1093/nar/24.9.1702.
2
Padlock oligonucleotides as a tool for labeling superhelical DNA.
Nucleic Acids Res. 2002 Feb 1;30(3):E12. doi: 10.1093/nar/30.3.e12.
3
Detection of covalent triplex within human cells.
Nucleic Acids Res. 1996 Nov 1;24(21):4210-6. doi: 10.1093/nar/24.21.4210.
4
Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
Biophys J. 1998 Feb;74(2 Pt 1):1015-23. doi: 10.1016/S0006-3495(98)74026-3.
5
Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites.
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501-5. doi: 10.1073/pnas.90.8.3501.
7
Oligodeoxynucleotide-directed photo-induced cross-linking of HIV proviral DNA via triple-helix formation.
Nucleic Acids Res. 1992 Aug 25;20(16):4275-81. doi: 10.1093/nar/20.16.4275.
9
Stability of DNA triplexes on shuttle vector plasmids in the replication pool in mammalian cells.
J Biol Chem. 2000 Dec 15;275(50):39117-24. doi: 10.1074/jbc.M005404200.
10
Characteristics of triplex-directed photoadduct formation by psoralen-linked oligodeoxynucleotides.
Nucleic Acids Res. 1995 Nov 11;23(21):4283-9. doi: 10.1093/nar/23.21.4283.

引用本文的文献

1
Preparation of DNA and nucleoprotein samples for AFM imaging.
Micron. 2011 Feb;42(2):196-206. doi: 10.1016/j.micron.2010.08.011. Epub 2010 Sep 9.
2
AFM for analysis of structure and dynamics of DNA and protein-DNA complexes.
Methods. 2009 Mar;47(3):206-13. doi: 10.1016/j.ymeth.2008.09.002. Epub 2008 Oct 7.
3
The triple helix: 50 years later, the outcome.
Nucleic Acids Res. 2008 Sep;36(16):5123-38. doi: 10.1093/nar/gkn493. Epub 2008 Aug 1.
4
Sequence-specific fluorescent labeling of double-stranded DNA observed at the single molecule level.
Nucleic Acids Res. 2003 Oct 15;31(20):e125. doi: 10.1093/nar/gng125.
5
Padlock oligonucleotides as a tool for labeling superhelical DNA.
Nucleic Acids Res. 2002 Feb 1;30(3):E12. doi: 10.1093/nar/30.3.e12.
6
Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate.
Biophys J. 1999 Jul;77(1):568-76. doi: 10.1016/S0006-3495(99)76913-4.
7
Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
Biophys J. 1998 Feb;74(2 Pt 1):1015-23. doi: 10.1016/S0006-3495(98)74026-3.
8
DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines.
Nucleic Acids Res. 1997 Oct 1;25(19):3787-94. doi: 10.1093/nar/25.19.3787.

本文引用的文献

1
Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites.
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501-5. doi: 10.1073/pnas.90.8.3501.
2
Electron microscopy visualization of oligonucleotide binding to duplex DNA via triplex formation.
J Mol Biol. 1993 Mar 20;230(2):379-83. doi: 10.1006/jmbi.1993.1154.
3
4
Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen.
Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7879-83. doi: 10.1073/pnas.90.16.7879.
6
Oligonucleotide clamps arrest DNA synthesis on a single-stranded DNA target.
Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10013-7. doi: 10.1073/pnas.90.21.10013.
7
Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide.
J Virol. 1993 Dec;67(12):7324-31. doi: 10.1128/JVI.67.12.7324-7331.1993.
8
DNA curvature influences the internal motions of supercoiled DNA.
EMBO J. 1993 Nov;12(11):4407-12. doi: 10.1002/j.1460-2075.1993.tb06125.x.
9
A parallel DNA triplex as a model for the intermediate in homologous recombination.
J Mol Biol. 1994 Jun 3;239(2):181-200. doi: 10.1006/jmbi.1994.1362.
10
Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF.
Science. 1994 May 20;264(5162):1134-7. doi: 10.1126/science.8178172.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验