Suppr超能文献

在含有多个连续嘧啶的寡嘌呤位点处形成DNA三螺旋。

DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines.

作者信息

Gowers D M, Fox K R

机构信息

Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.

出版信息

Nucleic Acids Res. 1997 Oct 1;25(19):3787-94. doi: 10.1093/nar/25.19.3787.

Abstract

We have used DNase I footprinting to assess the formation of triple helices at 15mer oligopurine target sites which are interrupted by several (up to four) adjacent central pyrimidine residues. Third strand oligonucleotides were designed to generate complexes containing central (X.TA)nor (X.CG)n triplets (X = each base in turn) surrounded by C+.GC and T.AT triplets. It has previously been shown that G.TA and T.CG are the most stable triplets for recognition of single TA and CG interruptions. We show that these triplets are the most useful for recognizing consecutive pyrimidine interruptions and find that addition of each pyrimidine residue leads to a 30-fold decrease in third strand affinity. The addition of 10 microM naphthylquinoline triplex-binding ligand stabilizes each complex so that all the oligonucleotides produce footprints at similar concentrations (0.3 microM). Targets containing two pyrimidines are only bound by oligonucleotides generating (G.TA)2 and (T.CG)2 with a further 30-fold decrease in affinity. (G.TA)2 is slightly more stable than (T.CG)2. In the presence of the triplex-binding ligand the order of stability is (G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2 and (T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2. No oligonucleotide footprints are generated at target sites containing three consecutive pyrimidines, though addition of 10 microM triplex-binding ligand produces stable complexes with oligonucleotides generating (G.TA)3, (T.CG)3 and (C.CG)3, with a further 30-fold reduction in affinity. No footprints are generated at targets containing four Ts, though the ligand induces a weak interaction with the oligonucleotide generating (T.CG)4.

摘要

我们已使用DNA酶I足迹法来评估在15聚体寡嘌呤靶位点处三链螺旋的形成,这些靶位点被几个(最多四个)相邻的中心嘧啶残基所中断。设计第三链寡核苷酸以生成包含由C⁺.GC和T.AT三联体包围的中心(X.TA)nor或(X.CG)n三联体(X依次为每个碱基)的复合物。先前已表明,G.TA和T.CG是识别单个TA和CG中断的最稳定三联体。我们表明这些三联体对于识别连续的嘧啶中断最为有用,并发现添加每个嘧啶残基会导致第三链亲和力降低30倍。添加10微摩尔萘基喹啉三链体结合配体可稳定每种复合物,从而使所有寡核苷酸在相似浓度(0.3微摩尔)下产生足迹。含有两个嘧啶的靶标仅被生成(G.TA)2和(T.CG)2的寡核苷酸结合,亲和力进一步降低30倍。(G.TA)2比(T.CG)2稍稳定。在三链体结合配体存在下,稳定性顺序为(G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2和(T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2。在含有三个连续嘧啶的靶位点处未产生寡核苷酸足迹,不过添加l0微摩尔三链体结合配体可与生成(G.TA)3、(T.CG)3和(C.CG)3的寡核苷酸形成稳定复合物,亲和力进一步降低30倍。在含有四个T的靶标处未产生足迹,不过该配体可诱导与生成(T.CG)4的寡核苷酸产生弱相互作用。

相似文献

1
DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines.
Nucleic Acids Res. 1997 Oct 1;25(19):3787-94. doi: 10.1093/nar/25.19.3787.
3
Specificity of antiparallel DNA triple helix formation.
Biochemistry. 1996 Nov 26;35(47):15038-48. doi: 10.1021/bi9609679.
5
Triple helix formation at (AT)n adjacent to an oligopurine tract.
Nucleic Acids Res. 1998 Aug 15;26(16):3626-33. doi: 10.1093/nar/26.16.3626.
8
Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment.
Biochem J. 1996 Mar 1;314 ( Pt 2)(Pt 2):427-32. doi: 10.1042/bj3140427.
9
Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples.
Structure. 1994 Jan 15;2(1):17-32. doi: 10.1016/s0969-2126(00)00005-8.
10
Effects of an abasic site on triple helix formation characterized by affinity cleaving.
Nucleic Acids Res. 1991 Sep 25;19(18):4963-5. doi: 10.1093/nar/19.18.4963.

引用本文的文献

1
Three- and four-stranded nucleic acid structures and their ligands.
RSC Chem Biol. 2025 Feb 19;6(4):466-491. doi: 10.1039/d4cb00287c. eCollection 2025 Apr 2.
2
Structure, stability and behaviour of nucleic acids in ionic liquids.
Nucleic Acids Res. 2014 Aug;42(14):8831-44. doi: 10.1093/nar/gku499. Epub 2014 Jul 10.
3
Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data.
Genome Res. 2012 Jul;22(7):1372-81. doi: 10.1101/gr.130237.111. Epub 2012 May 1.
4
Potential in vivo roles of nucleic acid triple-helices.
RNA Biol. 2011 May-Jun;8(3):427-39. doi: 10.4161/rna.8.3.14999. Epub 2011 May 1.
5
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Biochimie. 2011 Aug;93(8):1197-208. doi: 10.1016/j.biochi.2011.04.001. Epub 2011 Apr 11.
6
In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents.
Nucleic Acids Res. 2010 Mar;38(5):e31. doi: 10.1093/nar/gkp1139. Epub 2009 Dec 8.
7
DNA triple helices: biological consequences and therapeutic potential.
Biochimie. 2008 Aug;90(8):1117-30. doi: 10.1016/j.biochi.2008.02.011. Epub 2008 Feb 21.
8
Four base recognition by triplex-forming oligonucleotides at physiological pH.
Nucleic Acids Res. 2005 May 23;33(9):3025-32. doi: 10.1093/nar/gki625. Print 2005.
10
Triple helix formation at (AT)n adjacent to an oligopurine tract.
Nucleic Acids Res. 1998 Aug 15;26(16):3626-33. doi: 10.1093/nar/26.16.3626.

本文引用的文献

1
Studies on the formation of two- and three-stranded polyribonucleotides.
Biochim Biophys Acta. 1957 Dec;26(3):457-68. doi: 10.1016/0006-3002(57)90091-4.
2
Specific inhibition of c-fos proto-oncogene expression by triple-helix-forming oligonucleotides.
J Cell Biochem. 1996 May;61(2):301-9. doi: 10.1002/(SICI)1097-4644(19960501)61:2%3C301::AID-JCB13%3E3.0.CO;2-O.
4
DNA sequence specificity of a naphthylquinoline triple helix-binding ligand.
Nucleic Acids Res. 1996 Nov 1;24(21):4133-8. doi: 10.1093/nar/24.21.4133.
5
6
Purification of single-stranded M13 DNA by cooperative triple-helix-mediated affinity capture.
Anal Biochem. 1996 Feb 1;234(1):83-95. doi: 10.1006/abio.1996.0053.
7
Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment.
Biochem J. 1996 Mar 1;314 ( Pt 2)(Pt 2):427-32. doi: 10.1042/bj3140427.
8
Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking.
Nucleic Acids Res. 1996 May 1;24(9):1702-9. doi: 10.1093/nar/24.9.1702.
9
Triple helix formation at A8XA8.T8YT8.
FEBS Lett. 1993 Oct 11;332(1-2):189-92. doi: 10.1016/0014-5793(93)80510-2.
10
DNA triple-helix specific intercalators as antigene enhancers: unfused aromatic cations.
Biochemistry. 1993 Oct 12;32(40):10614-21. doi: 10.1021/bi00091a011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验