Suppr超能文献

Intercellular transfer of a glycosylphosphatidylinositol (GPI)-linked protein: release and uptake of CD4-GPI from recombinant adeno-associated virus-transduced HeLa cells.

作者信息

Anderson S M, Yu G, Giattina M, Miller J L

机构信息

Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases,National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5894-8. doi: 10.1073/pnas.93.12.5894.

Abstract

A diverse group of GPI-anchored protein structures are ubiquitously expressed on the external cell membranes of eukaryotes. Whereas the physiological role for these structures is usually defined by their protein component, the precise biological significance of the glycolipid anchors remains vague. In the course of producing a HeLa cell line (JM88) that contained a recombinant adeno-associated virus genome expressing a GPI-anchored CD4-GPI fusion protein on the surface of the cells, we noted the transfer of CD4-GPI to native HeLa cells. Transfer occurred after direct cell contact or exposure to JM88 cell supernatants. The magnitude of contact-mediated CD4-GPI transfer correlated with temperature. Supernatant CD4-GPI also attached to human red blood cells and could be cleaved with phosphatidylinositol-specific phospholipase C. The attached CD4-GPI remained biologically active after transfer and permitted the formation of syncytium when coated HeLa cells were incubated with glycoprotein 160 expressing H9 cells. JM88 cells provide a model for the production, release, and reattachment of CD4-GPI and may furnish insight into a physiologic role of naturally occurring GPI-anchored proteins. This approach may also allow the production of other recombinant GPI-anchored proteins for laboratory and clinical investigation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3729/39158/c9df8b2d18f0/pnas01513-0231-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验