Zvyaga T A, Fahmy K, Siebert F, Sakmar T P
Howard Hughes Medical Institute, Laboratory of Molecular Biology and Biochemistry, Rockefeller University, New York, New York 10021, USA.
Biochemistry. 1996 Jun 11;35(23):7536-45. doi: 10.1021/bi960391n.
A mutation in the gene for the rod photoreceptor molecule rhodopsin causes congenital night blindness. The mutation results in a replacement of Gly90 by an aspartic acid residue. Two molecular mechanisms have been proposed to explain the physiology of affected rod cells. One involves constitutive activity of the G90D mutant opsin [Rao, V. R., Cohen, G. B., & Oprian, D. D. (1994) Nature 367, 639-642]. A second involves increased photoreceptor noise caused by thermal isomerization of the G90D pigment chromophore [Sieving, P. A., Richards, J. E., Naarendorp F., Bingham, E. L., Scott, K., & Alpern, M. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 880-884]. Based on existing models of rhodopsin and in vitro biochemical studies of site-directed mutants, it appears likely that Gly90 is in the immediate proximity of the Schiff base chromophore linkage. We have studied in detail the mutant pigments G90D and G90D/E113A using biochemical and Fourier-transform infrared (FTIR) spectroscopic methods. The photoproduct of mutant pigment G90D, which absorbs maximally at 468 nm and contains a protonated Schiff base linkage, can activate transducin. However, the active photoproduct decays rapidly to opsin and free all-trans-retinal. FTIR studies of mutant G90D show that the dark state of the pigment has several structural features of metarhodopsin II, the active form of rhodopsin. These include a protonated carboxylic acid group at position Glu113 and increased hydrogen-bond strength of Asp83. Additional results, which relate to the structure of the active G90D photoproduct, are also reported. Taken together, these results may be relevant to understanding the molecular mechanism of congenital night blindness caused by the G90D mutation in human rhodopsin.
视杆光感受器分子视紫红质基因的突变会导致先天性夜盲。该突变导致甘氨酸90被天冬氨酸残基取代。已提出两种分子机制来解释受影响视杆细胞的生理学。一种涉及G90D突变型视蛋白的组成型活性[Rao, V. R., Cohen, G. B., & Oprian, D. D. (1994)《自然》367, 639 - 642]。另一种涉及由G90D色素发色团的热异构化引起的光感受器噪声增加[Sieving, P. A., Richards, J. E., Naarendorp F., Bingham, E. L., Scott, K., & Alpern, M. (1995)《美国国家科学院院刊》92, 880 - 884]。基于现有的视紫红质模型和定点突变体的体外生化研究,甘氨酸90似乎紧邻席夫碱发色团连接。我们使用生化和傅里叶变换红外(FTIR)光谱方法详细研究了突变色素G90D和G90D/E113A。突变色素G90D的光产物在468 nm处有最大吸收且含有质子化的席夫碱连接,可激活转导蛋白。然而,活性光产物迅速衰变为视蛋白和游离的全反式视黄醛。突变体G90D的FTIR研究表明,色素的暗态具有视紫红质II(视紫红质的活性形式)的几个结构特征。这些特征包括位于113位的质子化羧酸基团和83位天冬氨酸氢键强度增加。还报告了与活性G90D光产物结构相关的其他结果。综上所述,这些结果可能与理解人类视紫红质中G90D突变导致先天性夜盲的分子机制有关。