Fahmy K, Zvyaga T A, Sakmar T P, Siebert F
Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany.
Biochemistry. 1996 Nov 26;35(47):15065-73. doi: 10.1021/bi961486s.
The replacement of Gly90 by Asp in human rhodopsin causes congenital night blindness. It has been suggested that the molecular origin for the trait is an altered electrostatic environment of the protonated retinal Schiff base chromophore. We have investigated the corresponding recombinant bovine rhodopsin mutant G90D, as well as the related mutants E113A and G90D/E113A, using spectroscopy at low temperature. This allows the assessment of chromophore-protein interactions under conditions where conformational changes are mainly restricted to the retinal-binding site. Each of the mutant pigments formed bathorhodopsin- and isorhodopsin-like intermediates, but the concomitant visible absorption changes reflected differences in the electrostatic environment of the protonated Schiff base in each pigment. Fourier transform infrared-difference spectroscopy revealed effects on the chromophore fingerprint and hydrogen-out-of-plane vibrational modes, which were indicative of the removal of an electrostatic perturbation near C12 of the retinal chromophore in all three mutants. A comparison of the UV-visible and infrared-difference spectra of the mutant pigments strongly suggests that Glu113 is stably protonated in G90D. The corresponding carbonyl-stretching mode is assigned to a band at 1727 cm-1. In contrast to the case in native bathorhodopsin, the all-trans-retinal chromophores in the primary photoproducts of the mutant pigments are essentially relaxed. The peptide carbonyl vibrational changes in mutants G90D and G90D/ E113A suggest that this is due to a more flexible retinal-binding site. Therefore, the steric strain exerted on the chromophore in native bathorhodopsin may be caused by electrostatic forces that specifically involve glutamate 113.
人视紫红质中第90位甘氨酸被天冬氨酸取代会导致先天性夜盲。有人提出,该性状的分子起源是质子化视黄醛席夫碱发色团的静电环境发生了改变。我们利用低温光谱研究了相应的重组牛视紫红质突变体G90D,以及相关突变体E113A和G90D/E113A。这使得我们能够在构象变化主要局限于视黄醛结合位点的条件下评估发色团与蛋白质的相互作用。每种突变色素都形成了类视紫红质原和类异视紫红质中间体,但伴随的可见吸收变化反映了每种色素中质子化席夫碱静电环境的差异。傅里叶变换红外差光谱揭示了对发色团指纹和氢面外振动模式的影响,这表明在所有三个突变体中视黄醛发色团C12附近的静电扰动被消除。突变色素的紫外可见光谱和红外差光谱的比较强烈表明,在G90D中,Glu113稳定地质子化。相应的羰基伸缩模式被指定为1727 cm-1处的一个谱带。与天然视紫红质原的情况不同,突变色素初级光产物中的全反式视黄醛发色团基本处于松弛状态。突变体G90D和G90D/E113A中的肽羰基振动变化表明,这是由于视黄醛结合位点更灵活。因此,天然视紫红质原中施加在发色团上的空间应变可能是由特别涉及谷氨酸113的静电力引起的。