Suppr超能文献

龙虾口胃神经节中生理水平的氧气对神经网络的调节作用。

Modulation of a neural network by physiological levels of oxygen in lobster stomatogastric ganglion.

作者信息

Massabuau J C, Meyrand P

机构信息

Laboratoire de Neurobiologie et Physiologie Comparées, Université de Bordeaux I, Arcachon, France.

出版信息

J Neurosci. 1996 Jun 15;16(12):3950-9. doi: 10.1523/JNEUROSCI.16-12-03950.1996.

Abstract

Although a large body of literature has been devoted to the role of O2 in the CNS, how neural networks function during long-term exposures to low but physiological O2 partial pressure (PO2) has never been studied. We addressed this issue in crustaceans, where arterial blood PO2 is set in the 1-3 kPa range, a level that is similar to the most frequently measured tissue PO2 in the vertebrate CNS. We demonstrate that over its physiological range, O2 can reversibly modify the activity of the pyloric network in the lobster Homarus gammarus. This network is composed of 12 identified neurons that spontaneously generate a triphasic rhythmic motor output in vitro as well as in vivo. When PO2 decreased from 20 to 1 kPa, the pyloric cycle period increased by 30-40%, and the neuronal pattern was modified. These effects were all dose- and state-dependent. Specifically, we found that the single lateral pyloric (LP) neuron was responsible for the O2-mediated changes. At low PO2, the LP burst duration increased without change in its intraburst firing frequency. Because LP inhibits the pyloric pacemaker neurons, the increased LP burst duration delayed the onset of each rhythmic pacemaker burst, thereby reducing significantly the cycling frequency. When we deleted LP, the network was no longer O2-sensitive. In conclusion, we propose that (1) O2 has specific neuromodulator-like actions in the CNS and that (2) the physiological role of this reduction of activity and energy expenditure could be a key adaptation for tolerating low but physiological PO2 in sensitive neural networks.

摘要

尽管已有大量文献致力于研究氧气在中枢神经系统中的作用,但神经网络在长期暴露于低水平但仍处于生理范围内的氧分压(PO2)时如何发挥功能,却从未得到过研究。我们在甲壳类动物中解决了这个问题,其动脉血PO2设定在1-3 kPa范围内,这一水平与在脊椎动物中枢神经系统中最常测量到的组织PO2相似。我们证明,在其生理范围内,氧气可可逆地改变龙虾螯虾幽门网络的活动。该网络由12个已识别的神经元组成,它们在体外和体内均可自发产生三相节律性运动输出。当PO2从20 kPa降至1 kPa时,幽门周期增加30-40%,神经元模式发生改变。这些效应均具有剂量和状态依赖性。具体而言,我们发现单个外侧幽门(LP)神经元是氧气介导变化的原因。在低PO2时,LP爆发持续时间增加,而其爆发内放电频率不变。由于LP抑制幽门起搏器神经元,LP爆发持续时间的增加延迟了每个节律性起搏器爆发的起始,从而显著降低了循环频率。当我们去除LP时,该网络不再对氧气敏感。总之,我们提出:(1)氧气在中枢神经系统中具有类似特定神经调节剂的作用;(2)这种活动和能量消耗减少的生理作用可能是敏感神经网络耐受低水平但仍处于生理范围内的PO2的关键适应性机制。

相似文献

引用本文的文献

本文引用的文献

1
Oxygen tension in mammalian brain.
Fed Proc. 1957 Sep;16(3):689-92.
2
Cellular oxygen requirements.细胞需氧量。
Fed Proc. 1957 Sep;16(3):671-80.
8
Aquatic gas exchange: theory.
Respir Physiol. 1966;1(1):1-12. doi: 10.1016/0034-5687(66)90024-7.
9
Simpler networks.更简单的网络。
Ann N Y Acad Sci. 1972 Aug 25;193:59-72. doi: 10.1111/j.1749-6632.1972.tb27823.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验