Clemens S, Massabuau J C, Legeay A, Meyrand P, Simmers J
Laboratoire de Neurobiologie des Réseaux Université de Bordeaux I and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5816, F-33120 Arcachon, France.
J Neurosci. 1998 Apr 1;18(7):2788-99. doi: 10.1523/JNEUROSCI.18-07-02788.1998.
The stomatogastric ganglion (STG) of the European lobster Homarus gammarus contains two rhythm-generating networks (the gastric and pyloric circuits) that in resting, unfed animals produce two distinct, yet strongly interacting, motor patterns. By using simultaneous EMG recordings from the gastric and pyloric muscles in vivo, we found that after feeding, the gastropyloric interaction disappears as the two networks express accelerated motor rhythms. The return to control levels of network activity occurs progressively over the following 1-2 d and is associated with a gradual reappearance of the gastropyloric interaction. In parallel with this change in network activity is an alteration of oxygen levels in the blood. In resting, unfed animals, arterial partial pressure of oxygen (PO2) is most often between 1 and 2 kPa and then doubles within 1 hr after feeding, before returning to control values some 24 hr later. In vivo, experimental prevention of the arterial PO2 increase after feeding leads to a slowing of pyloric rhythmicity toward control values and a reappearance of the gastropyloric interaction, without apparent effect on gastric network operation. Using in vitro preparations of the stomatogastric nervous system and by changing oxygen levels uniquely at the level of the STG within the range observed in the intact animal, we were able to mimic most of the effects observed in vivo. Our data indicate that the gastropyloric interaction appears only during a "free run" mode of foregut activity and that the coordinated operation of multiple neural networks may be modulated by local changes in oxygenation.
欧洲龙虾螯龙虾的口胃神经节(STG)包含两个节律产生网络(胃和幽门回路),在静止、未进食的动物中,这两个网络会产生两种不同但相互作用强烈的运动模式。通过在体内同时记录胃和幽门肌肉的肌电图,我们发现进食后,随着两个网络表现出加速的运动节律,胃幽门相互作用消失。在接下来的1 - 2天内,网络活动逐渐恢复到对照水平,这与胃幽门相互作用的逐渐重新出现有关。与网络活动的这种变化同时发生的是血液中氧气水平的改变。在静止、未进食的动物中,动脉血氧分压(PO2)通常在1至2 kPa之间,进食后1小时内会翻倍,然后在约24小时后恢复到对照值。在体内,实验性地阻止进食后动脉PO2的升高会导致幽门节律性减慢至对照值,并使胃幽门相互作用重新出现,而对胃网络的运作没有明显影响。利用口胃神经系统的体外制备物,并在完整动物观察到的范围内仅在STG水平改变氧气水平,我们能够模拟在体内观察到的大部分效应。我们的数据表明,胃幽门相互作用仅在前肠活动的“自由运行”模式期间出现,并且多个神经网络的协同运作可能受到局部氧合变化的调节。