Dhawan V, Ishikawa T, Patlak C, Chaly T, Robeson W, Belakhlef A, Margouleff C, Mandel F, Eidelberg D
Department of Neurology, North Shore University Hospital/Cornell University Medical College, Manhasset, New York 11030, USA.
J Nucl Med. 1996 Feb;37(2):209-16.
PET has been used to quantify striatal 6-[18F]fluoro-L-dopa (FDOPA) uptake as a measure of presynaptic dopaminergic function. It has been suggested that the estimation of dopa-decarboxylation (DDC) rate, kD3, using a compartmental approach to dynamic FDOPA/PET data, can provide a better objective marker of parkinsonism. This modeling process, however, requires many assumptions to estimate DDC activity with acceptable errors.
We combined FDOPA 3-O-methyl-fluorodopa PET studies on three normal subjects and five Parkinson's disease patients.
The contradicted modeling assumptions are: (a) the rate constants across the blood-brain barrier, KD1 and kD2, for 3OMFD and FDOPA were in similar range (ratio approximately equal to 1) and thus not equal to assumed values of KM1/KD1 of 2.3 derived from rat studies and applied to human FDOPA studies and (b) the KD1/kD2 ratio for frontal cortex was not equal to that for the striatum (0.70 +/- 0.15 versus 1.07 +/- 0.3; p < 0.002). Discriminant analyses indicate that simple estimates like the striatum-to-occipital ratio, or the graphically derived unidirectional transport rate constant (KiFD) separate normals from Parkinson's disease patients at least as accurately as estimates of striatal DDC activity (kD3).
Measurements of striatal DDC activity with dynamic FDOPA/PET and compartmental modeling may be based on incorrect assumptions. Even though such complex models yield microparameters that may be applicable to certain clinical research demands, they may produce misleading results in other experimental settings.
正电子发射断层扫描(PET)已被用于量化纹状体6-[18F]氟-L-多巴(FDOPA)摄取,作为突触前多巴胺能功能的一种测量方法。有人提出,使用动态FDOPA/PET数据的房室模型方法来估计多巴脱羧酶(DDC)速率kD3,可以提供一个更好的帕金森病客观标志物。然而,这个建模过程需要许多假设来以可接受的误差估计DDC活性。
我们将对三名正常受试者和五名帕金森病患者进行的FDOPA和3-O-甲基氟多巴PET研究结合起来。
相互矛盾的建模假设是:(a)3OMFD和FDOPA穿过血脑屏障的速率常数KD1和kD2处于相似范围(比率约等于1),因此不等于从大鼠研究得出并应用于人类FDOPA研究的假设值KM1/KD1的2.3,以及(b)额叶皮质的KD1/kD2比率不等于纹状体的比率(0.70±0.15对1.07±0.3;p<0.002)。判别分析表明,像纹状体与枕叶比率这样的简单估计,或通过图形得出的单向转运速率常数(KiFD),将正常人与帕金森病患者区分开来的准确性至少与纹状体DDC活性(kD3)的估计相同。
用动态FDOPA/PET和房室模型测量纹状体DDC活性可能基于不正确的假设。尽管这种复杂模型产生的微观参数可能适用于某些临床研究需求,但它们在其他实验环境中可能会产生误导性结果。