Suppr超能文献

Measurement of quantum noise in fluoroscopic systems for portal imaging.

作者信息

Mah D W, Rowlands J A, Rawlinson J A

机构信息

Department of Medical Biophysics, University of Toronto, Canada.

出版信息

Med Phys. 1996 Feb;23(2):231-8. doi: 10.1118/1.597794.

Abstract

In fluoroscopic portal imaging systems, a metal plate is bonded to a phosphor screen and together these act as the primary x-ray sensor. The light from the screen is collected and imaged by a lens on the target of a video camera. The demagnification (M) between the large area of the phosphor being imaged and the small active area of the video camera results in poor optical coupling between the screen and the video camera. Consequently x-ray quantum noise is small compared to other noise sources. By reducing the demagnification, the light from the screen is collected more efficiently, so we were able to increase the x-ray quantum noise relative to other noise sources and thus unambiguously identify it. The noise power spectrum was measured as a function of M to determine the relationship between the x-ray quantum noise. shot noise, and amplifier noise. It was found by extrapolation to clinical demagnifications that the amplifier noise dominates x-ray quantum noise, at all spatial frequencies, but the shot noise was less than the x-ray quantum noise at low spatial frequencies. For low spatial frequencies, this implies that a secondary quantum sink can be avoided. If amplifier noise could be sufficiently reduced, x-ray quantum limited images could be obtained in clinical systems at low spatial frequencies.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验