Suppr超能文献

基于视频的门静脉成像的量子计数与探测量子效率分析

A quantum accounting and detective quantum efficiency analysis for video-based portal imaging.

作者信息

Bissonnette J P, Cunningham I A, Jaffray D A, Fenster A, Munro P

机构信息

London Regional Cancer Centre, Ontario, Canada.

出版信息

Med Phys. 1997 Jun;24(6):815-26. doi: 10.1118/1.598009.

Abstract

The quality of images generated with radiographic imaging systems can be degraded if an inadequate number of secondary quanta are used at any stage before production of the final image. A theoretical technique known as a "quantum accounting diagram" (QAD) analysis has been developed recently to predict the detective quantum efficiency (DQE) of an imaging system as a function of spatial frequency based on an analysis of the propagation of quanta. It is used to determine the "quantum sink" stage(s) (stages which degrade the DQE of an imaging system due to quantum noise caused by a finite number of quanta), and to suggest design improvements to maximize image quality. We have used this QAD analysis to evaluate a video-based portal imaging system to determine where changes in design will have the most benefit. The system consists of a thick phosphor layer bonded to a 1 mm thick copper plate which is viewed by a T.V. camera. The imaging system has been modeled as ten cascaded stages, including: (i) conversion of x-ray quanta to light quanta; (ii) collection of light by a lens; (iii) detection of light quanta by a T.V. camera; (iv) the various blurring processes involved with each component of the imaging system; and, (v) addition of noise from the T.V. camera. The theoretical DQE obtained with the QAD analysis is in excellent agreement with the experimental DQE determined from previously published data. It is shown that the DQE is degraded at low spatial frequencies (< 0.25 cycles/mm) by quantum sinks both in the number of detected x rays and the number of detected optical quanta. At higher spatial frequencies, the optical quantum sink becomes the limiting factor in image quality. The secondary quantum sinks can be prevented, up to a spatial frequency of 0.5 cycles/mm, by increasing the overall system gain by a factor of 9 or more, or by improving the modulation transfer function (MTF) of components in the optical chain.

摘要

如果在最终图像生成之前的任何阶段使用的二次量子数量不足,那么放射成像系统生成的图像质量可能会下降。最近开发了一种称为“量子计算图”(QAD)分析的理论技术,用于基于量子传播分析来预测成像系统的探测量子效率(DQE)作为空间频率的函数。它用于确定“量子汇聚”阶段(由于有限数量量子引起的量子噪声而降低成像系统DQE的阶段),并提出设计改进建议以最大化图像质量。我们已使用此QAD分析来评估基于视频的门静脉成像系统,以确定设计更改在何处将带来最大益处。该系统由一个粘结到1毫米厚铜板上的厚磷光体层组成,由电视摄像机进行观察。该成像系统已被建模为十个级联阶段,包括:(i)将X射线量子转换为光量子;(ii)通过透镜收集光;(iii)由电视摄像机检测光量子;(iv)成像系统每个组件涉及的各种模糊过程;以及(v)添加来自电视摄像机的噪声。通过QAD分析获得的理论DQE与根据先前发表的数据确定的实验DQE非常吻合。结果表明,在低空间频率(<0.25周期/毫米)下,检测到的X射线数量和检测到的光量子数量中的量子汇聚都会降低DQE。在较高空间频率下,光量子汇聚成为图像质量的限制因素。通过将整个系统增益提高9倍或更多,或者通过改善光链中组件的调制传递函数(MTF),可以在高达0.5周期/毫米的空间频率下防止二次量子汇聚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验