Suppr超能文献

长期增强对序列学习和预测的功能意义。

Functional significance of long-term potentiation for sequence learning and prediction.

作者信息

Abbott L F, Blum K I

机构信息

Center for Complex Systems, Brandeis University, Waltham, MA 02254, USA.

出版信息

Cereb Cortex. 1996 May-Jun;6(3):406-16. doi: 10.1093/cercor/6.3.406.

Abstract

Population coding, where neurons with broad and overlapping firing rate tuning curves collectively encode information about a stimulus, is a common feature of sensory systems. We use decoding methods and measured properties of NMDA-mediated LTP induction to study the impact of long-term potentiation of synapses between the neurons of such a coding array. We find that, due to a temporal asymmetry in the induction of NMDA-mediated LTP, firing patterns in a neuronal array that initially represent the current value of a sensory input will, after training, provide an experienced-based prediction of that input instead. We compute how this prediction arises from and depends on the training experience. We also show how the encoded prediction can be used to generate learned motor sequences, such as the movement of a limb. This involves a novel form of memory recall that is driven by the motor response so that it automatically generates new information at a rate approximate for the task being performed.

摘要

群体编码是感觉系统的一个共同特征,在群体编码中,具有广泛且重叠的放电率调谐曲线的神经元共同编码有关刺激的信息。我们使用解码方法和NMDA介导的长时程增强(LTP)诱导的测量特性,来研究这种编码阵列中神经元之间突触的长期增强的影响。我们发现,由于NMDA介导的LTP诱导存在时间不对称性,最初代表感觉输入当前值的神经元阵列中的放电模式,在训练后将提供基于经验的该输入预测。我们计算这种预测如何产生以及如何依赖于训练经验。我们还展示了编码的预测如何用于生成学习到的运动序列,例如肢体的运动。这涉及一种由运动反应驱动的新型记忆回忆形式,以便它以适合正在执行的任务的速率自动生成新信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验