Suppr超能文献

猴子面部编码的表征能力。

Representational capacity of face coding in monkeys.

作者信息

Abbott L F, Rolls E T, Tovee M J

机构信息

Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK.

出版信息

Cereb Cortex. 1996 May-Jun;6(3):498-505. doi: 10.1093/cercor/6.3.498.

Abstract

We examine the distributed nature of the neural code for faces represented by the firing of visual neurons in the superior temporal sulcus of monkeys. Both information theory and neural decoding techniques are applied to determine how the capacity to represent faces depends on the number of coding neurons. Using a combination of experimental data and Monte Carlo simulations, we show that the information grows linearly and the capacity to encode stimuli grows exponentially with the number of neurons. By decoding firing rates, we determine that the responses of the 14 recorded neurons can distinguish between 20 face stimuli with approximately 80% accuracy. In general, we find that N neurons of this type can encode approximately 3(2(04N)) different faces with 50% discrimination accuracy. These results indicate that the neural code for faces is highly distributed and capable of accurately representing large numbers of stimuli.

摘要

我们研究了猴子颞上沟视觉神经元放电所代表的面部神经编码的分布式特性。信息论和神经解码技术都被用于确定面部表征能力如何依赖于编码神经元的数量。通过结合实验数据和蒙特卡罗模拟,我们发现信息呈线性增长,且编码刺激的能力随神经元数量呈指数增长。通过解码放电率,我们确定所记录的14个神经元的反应能够以大约80%的准确率区分20种面部刺激。一般来说,我们发现这种类型的N个神经元能够以50%的辨别准确率编码大约3(2(04N))种不同的面部。这些结果表明,面部神经编码是高度分布式的,并且能够准确表征大量刺激。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验