Suppr超能文献

朝向人类视觉系统中面部和物体识别的统一模型。

Toward a unified model of face and object recognition in the human visual system.

机构信息

Centre for Sensorimotor Neuroscience, School of Human Movement Studies, University of Queensland QLD, Australia.

出版信息

Front Psychol. 2013 Aug 15;4:497. doi: 10.3389/fpsyg.2013.00497. eCollection 2013.

Abstract

Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects.

摘要

在过去的 30 年里,我们对视觉识别的机制和神经基础的理解取得了相当大的进展。在这期间,越来越多的证据使许多科学家得出结论,物体和面孔是以根本不同的方式被识别的,并且是在根本不同的皮质区域中被识别的。在心理学文献中,特别是,这种分离导致了我们处理和表示这两类物体的理论之间明显的脱节。本文遵循部分识别文献中的一个趋势,试图通过考虑学习的影响来调和我们对这两种识别形式的了解。本文采用了一种被广泛接受的、自组织的物体识别模型,解释了这样一个系统如何受到重复接触特定刺激类别的影响。这样做,它解释了许多通常被认为是面孔特有的识别方面(整体处理、结构处理、对反转的敏感性、异族效应、原型效应等)是如何在这样的系统中出现的类别特定学习的特性。总的来说,本文描述了一个单一的识别学习模型是如何以及如何产生与面孔和物体相关的看似非常不同的表示类型的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8fc/3744012/385836fdf447/fpsyg-04-00497-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验