Bilder Christopher R, Loughin Thomas M
Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA.
Biometrics. 2004 Mar;60(1):241-8. doi: 10.1111/j.0006-341X.2004.00147.x.
Questions that ask respondents to "choose all that apply" from a set of items occur frequently in surveys. Categorical variables that summarize this type of survey data are called both pick any/c variables and multiple-response categorical variables. It is often of interest to test for independence between two categorical variables. When both categorical variables can have multiple responses, traditional Pearson chi-square tests for independence should not be used because of the within-subject dependence among responses. An intuitively constructed version of the Pearson statistic is proposed to perform the test using bootstrap procedures to approximate its sampling distribution. First- and second-order adjustments to the proposed statistic are given in order to use a chi-square distribution approximation. A Bonferroni adjustment is proposed to perform the test when the joint set of responses for individual subjects is unavailable. Simulations show that the bootstrap procedures hold the correct size more consistently than the other procedures.
要求受访者从一组选项中“选择所有适用项”的问题在调查中经常出现。汇总这类调查数据的分类变量既被称为“任意选择/c变量”,也被称为多响应分类变量。检验两个分类变量之间的独立性通常很有意义。当两个分类变量都可以有多个响应时,由于响应之间存在受试者内部依赖性,不应使用传统的Pearson卡方独立性检验。本文提出了一种直观构建的Pearson统计量版本,通过自助程序来近似其抽样分布以进行检验。为了使用卡方分布近似,对所提出的统计量进行了一阶和二阶调整。当无法获得个体受试者的联合响应集时,提出了一种Bonferroni调整来进行检验。模拟结果表明,与其他程序相比,自助程序更能始终保持正确的规模。