Niu L, Wieboldt R, Ramesh D, Carpenter B K, Hess G P
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA.
Biochemistry. 1996 Jun 25;35(25):8136-42. doi: 10.1021/bi952364n.
Here we report the development and characterization of a new photolabile protecting group for the carboxyl group of neurotransmitters, 2-methoxy-5-nitrophenyl. The synthesis and characterization of a photolabile derivative of beta-alanine, caged beta-alanine, are described. beta-Alanine can activate the glycine receptor, a major inhibitory receptor in the mammalian central nervous system; the 2-methoxy-5-nitrophenyl derivative of beta-alanine combined with a laser-pulse photolysis method makes it possible to investigate the chemical kinetic mechanism of the receptor in the 3-microseconds time domain. The derivative is photolyzed by a laser pulse to release free beta-alanine within 3 microseconds and with a product quantum yield of 0.2. In aqueous solution in the dark and at neutral pH, the compound is more stable, by a factor of approximately of 25, than the analogous derivative of glycine [Ramesh, D., Wieboldt, R., Niu, L., Carpenter, B. K., & Hess, G. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11074-11078]. 2-Methoxy-5-nitrophenyl-beta-alanine hydrolyzes in aqueous solution at neutral pH with a t1/2 of approximately 1.5 h. Neither the 2-methoxy-5-nitrophenyl-beta-alanine nor the 2-methoxy-5-nitrophenol photolysis side product activates, inhibits, or potentiates the response of glycine receptors in rat hippocampal neurons to glycine. Photolysis of 2-methoxy-5-nitrophenyl-beta-alanine by irradiation with a 600-ns laser pulse at 333 nm releases beta-alanine, which then activates glycine receptor-channels on neurons equilibrated with the caged compound, as detected by whole-cell current recording. Compared with the analogous derivative of glycine, in terms of quantum yield, photolysis rate, and stability, this new compound is not only a better candidate for use in chemical kinetic investigations of the glycine receptor, but can also be used in determining the location of glycine receptors in neuronal cells.
在此,我们报告了一种用于神经递质羧基的新型光不稳定保护基团——2-甲氧基-5-硝基苯基的开发与特性。描述了β-丙氨酸的光不稳定衍生物——笼蔽β-丙氨酸的合成与特性。β-丙氨酸可激活甘氨酸受体,这是哺乳动物中枢神经系统中的一种主要抑制性受体;β-丙氨酸的2-甲氧基-5-硝基苯基衍生物与激光脉冲光解方法相结合,使得在3微秒时域内研究该受体的化学动力学机制成为可能。该衍生物经激光脉冲光解,在3微秒内释放出游离的β-丙氨酸,产物量子产率为0.2。在黑暗且中性pH的水溶液中,该化合物比甘氨酸的类似衍生物稳定约25倍。2-甲氧基-5-硝基苯基-β-丙氨酸在中性pH的水溶液中水解,半衰期约为1.5小时。2-甲氧基-5-硝基苯基-β-丙氨酸及其光解副产物2-甲氧基-5-硝基苯酚均不激活、抑制或增强大鼠海马神经元中甘氨酸受体对甘氨酸的反应。用333nm的600纳秒激光脉冲照射2-甲氧基-5-硝基苯基-β-丙氨酸进行光解,释放出β-丙氨酸,然后通过全细胞电流记录检测到,β-丙氨酸激活了与笼蔽化合物平衡的神经元上的甘氨酸受体通道。与甘氨酸的类似衍生物相比,就量子产率、光解速率和稳定性而言,这种新化合物不仅是用于甘氨酸受体化学动力学研究的更好候选物,还可用于确定神经元细胞中甘氨酸受体的位置。