Trombitás K, Pollack G H
Center for Bioengineering, University of Washington, Seattle 98195, USA.
Cell Motil Cytoskeleton. 1995;32(2):145-50. doi: 10.1002/cm.970320215.
To investigate the pattern of actin-filament translation in the intact myofibrillar matrix, we carried out electron micrographic experiments on the "rigor-stretch" model of insect-flight muscle. In this model, thin filaments are mechanically severed from their connections to the Z-line and may then slide freely over the myosin filaments when activated. The model is similar to the in vitro motility assay in that untethered actin filaments slide over myosin, but here the natural filament lattice is retained: sliding takes place through the lattice of thick filaments. We find, in this model, that while the extent of thin filament translation is variable from sarcomere to sarcomere, filaments never translate far enough to enter the opposite I-band. Unlike the in vitro motility assay, where the actin filament translates over the entire thick filament even with "incorrectly" polarized cross-bridges as the sole driver, in this intact filament-lattice model, cross-bridges are apparently unable to move filaments in both directions. We also find that the pattern of filament translation is collective. Although the extent of translation may vary among sarcomeres, in any given half-sarcomere all actin filaments translate by the same degree. Further, the extent of translation is the same in both halves of a given sarcomere. In rare instances where the extent of translation exhibited a transverse gradient across the myofibrillar half-sarcomere, the gradient was similar on both sides of the sarcomere. Filament translation within the sarcomere is thus collective. Some mechanism ensures that nearby but distinctly separated actin filaments move together and that cooperative-like behavior therefore extends to the supramolecular level.
为了研究完整肌原纤维基质中肌动蛋白丝的平移模式,我们对昆虫飞行肌的“僵直拉伸”模型进行了电子显微镜实验。在这个模型中,细肌丝从它们与Z线的连接处以机械方式切断,然后在激活时可在肌球蛋白丝上自由滑动。该模型类似于体外运动测定,即未束缚的肌动蛋白丝在肌球蛋白上滑动,但这里保留了天然的丝晶格:滑动通过粗肌丝的晶格进行。我们发现在这个模型中,虽然细肌丝的平移程度在不同肌节之间是可变的,但细肌丝从未平移得足够远以进入相对的I带。与体外运动测定不同,在体外运动测定中,即使以“错误”极化的横桥作为唯一驱动因素,肌动蛋白丝也能在整个粗肌丝上平移,而在这个完整的丝晶格模型中,横桥显然无法在两个方向上移动肌丝。我们还发现肌丝平移模式是集体性的。虽然不同肌节之间的平移程度可能不同,但在任何给定的半个肌节中,所有肌动蛋白丝的平移程度相同。此外,给定肌节的两半中的平移程度相同。在极少数情况下,平移程度在肌原纤维半个肌节上呈现横向梯度,肌节两侧的梯度相似。因此,肌节内的肌丝平移是集体性的。某种机制确保附近但明显分开的肌动蛋白丝一起移动,因此协同样行为延伸到超分子水平。