Suppr超能文献

昆虫飞行肌中强直横桥作用与细丝滑动的实验。

Experiments on rigor crossbridge action and filament sliding in insect flight muscle.

作者信息

Reedy M K, Lucaveche C, Reedy M C, Somasundaram B

机构信息

Duke University, Durham.

出版信息

Adv Exp Med Biol. 1993;332:33-44; discussion 44-6. doi: 10.1007/978-1-4615-2872-2_4.

Abstract

We have explored three aspects of rigor crossbridge action: 1. Under rigor conditions, slow stretching (2% per hour) of insect flight muscle (IFM) from Lethocerus causes sarcomere ruptures but never filament sliding. However, in 1 mM AMPPNP, slow stretching (5%/h) causes filament sliding but no sarcomere ruptures, although stiffness equals rigor values. Thus loaded rigor attachments in IFM show no strain relief over several hours, but near-rigor states that allow short-term strain relief indicate different grades of strongly bound bridges, and suggest approaches to annealing the rigor lattice. 2. Sarcomeres of Lethocerus flight muscle, stretched 20-60% and then rigorized, show "hybrid" crossbridge patterns, with overlap zones in rigor, but H-bands relaxed and revealing four-stranded R-hand helical thick filament structure. The sharp boundary exhibits precise phasing between relaxed and rigor arrays along each thick filament. Extrapolating one lattice into the other should allow detailed modeling of the action of each myosin head as it enters rigor. 3. The "A-(bee)-Z problem" exposes a conflict about actin rotational alignment between A-bands and Z-bands of bee IFM, raising the possibility that rigor induction might rotate actins forcefully from one pattern to the other. As Squire noted, 3-D reconstructions of Z-bands in relaxed bee IFM2) imply A-bands where actin target zones form rings rather than helices around thick filaments. However, we confirm Trombitás et al. that rigor crossbridges in bee IFM mark helically arrayed target zones. Moreover, we find that loose crossbridge interactions in relaxed bee IFM mark the same helical pattern. Thus no change of actin rotational alignment by rigor crossbridges seems necessary, but 3-D structure of IFM Z-bands should be re-evaluated regarding the apparent contradiction with A-band symmetry.

摘要

我们探究了强直横桥作用的三个方面

  1. 在强直条件下,对田鳖的昆虫飞行肌(IFM)进行缓慢拉伸(每小时2%)会导致肌节断裂,但不会引起细丝滑动。然而,在1 mM的AMPPNP中,缓慢拉伸(5%/小时)会导致细丝滑动,但不会引起肌节断裂,尽管其刚度与强直值相等。因此,IFM中的负载强直附着在数小时内没有应变缓解,但允许短期应变缓解的近强直状态表明存在不同等级的强结合桥,并提示了使强直晶格退火的方法。2. 田鳖飞行肌的肌节被拉伸20 - 60%然后强直化,呈现出“混合”横桥模式,在强直状态下有重叠区域,但H带松弛,揭示出四股R型螺旋粗丝结构。沿着每根粗丝,松弛和强直阵列之间的清晰边界呈现出精确的相位。将一种晶格外推到另一种晶格中,应该能够对每个肌球蛋白头部进入强直状态时的作用进行详细建模。3. “A - (蜜蜂) - Z问题”揭示了蜜蜂IFM的A带和Z带之间关于肌动蛋白旋转排列的冲突,这增加了强直诱导可能会将肌动蛋白从一种模式强力旋转到另一种模式的可能性。正如斯奎尔所指出的,对松弛状态下蜜蜂IFM的Z带进行的三维重建意味着在A带中,肌动蛋白靶区围绕粗丝形成环而不是螺旋。然而,我们证实了特龙比塔斯等人的观点,即蜜蜂IFM中的强直横桥标记了螺旋排列的靶区。此外,我们发现松弛状态下蜜蜂IFM中松散的横桥相互作用标记了相同的螺旋模式。因此,似乎没有必要通过强直横桥改变肌动蛋白的旋转排列,但鉴于与A带对称性的明显矛盾,IFM Z带的三维结构应该重新评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验