Suppr超能文献

通过高效液相色谱法预测药物与膜的相互作用:色谱表面的结构要求

Predicting drug-membrane interactions by HPLC: structural requirements of chromatographic surfaces.

作者信息

Liu H, Ong S, Glunz L, Pidgeon C

机构信息

Department of Medicinal Chemistry, School of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Anal Chem. 1995 Oct 1;67(19):3550-7. doi: 10.1021/ac00115a026.

Abstract

Drug-membrane interactions have recently been studied by immobilized artificial membrane (IAM) chromatography (Pidgeon, C.; et al. J. Med. Chem. 1995, 38, 590-595. Ong, S.; et al. Anal. Chem. 1995, 67, 755-762), and the molecular recognition properties of IAM surfaces toward drug binding/partitioning appear to be remarkably close to the molecular recognition properties of fluid membranes. The structural requirements of chromatography surfaces to emulate biological partitioning are unknown. To begin to elucidate the surface structural requirements needed to predict drug partitioning into membranes, three bonded phases were prepared. The chromatography bonded phases were prepared by immobilizing (i) a single-chain analog containing the phosphocholine (PC) headgroup (IAM.PC.DD), (ii) a long-chain alcohol containing polar OH groups protruding from the surface (12-OH-silica), and (iii) a long-chain fatty acid containing OCH3 groups protruding from the surface (12-MO-silica). The 12-OH-silica surface can be considered as an immobilized "octanol" phase with OH groups protruding from the surface and is therefore a solid phase model of octanol/water partitioning systems. As expected, improved capability of predicting solute-membrane interactions as found for the chromatographic surface containing the PC polar head-group because the PC headgroup is also found in natural cell membranes. For instance, the IAM.PC.DD column predicted drug partitioning into dimyristoylphosphatidylcholine liposomes (r = 0.864) better than 12-OH-silica (r = 0.812), and 12-MO-silica (r = 0.817). IAM. PC.DD columns also predicted intestinal drug absorption (r = 0.788) better than 12-OH-silica (r = 0.590) and 12-MO-silica (r = 0.681); reversed phase octadecylsilica (ODS) columns could not predict intestinal absorption (r = 0.10). Collectively, these results suggest that chromatographic surfaces containing interfacial polar groups, i.e., PC, OH, and OCH3, model drug-membrane interactions, but surfaces lacking interfacial polar functional groups (e.g., ODS surface) are poor models. Most interestingly, drug partitioning into octanol/water systems does not correlate with drug binding to the immobilized octanol phase. However, drug partitioning into immobilized octanol correlates with drug partitioning into liposomes (r = 0.812).

摘要

药物与膜的相互作用最近已通过固定化人工膜(IAM)色谱法进行了研究(皮金,C.等人,《药物化学杂志》,1995年,38卷,590 - 595页。翁,S.等人,《分析化学》,1995年,67卷,755 - 762页),并且IAM表面对药物结合/分配的分子识别特性似乎与流体膜的分子识别特性非常接近。用于模拟生物分配的色谱表面的结构要求尚不清楚。为了开始阐明预测药物分配到膜中的表面结构要求,制备了三种键合相。通过固定(i)含有磷酸胆碱(PC)头基的单链类似物(IAM.PC.DD)、(ii)表面突出含有极性OH基团的长链醇(12 - OH - 硅胶)和(iii)表面突出含有OCH3基团的长链脂肪酸(12 - MO - 硅胶)来制备色谱键合相。12 - OH - 硅胶表面可被视为具有从表面突出的OH基团的固定化“辛醇”相,因此是辛醇/水分配系统的固相模型。正如预期的那样,对于含有PC极性头基的色谱表面,预测溶质与膜相互作用的能力有所提高,因为在天然细胞膜中也发现了PC头基。例如,IAM.PC.DD柱预测药物分配到二肉豆蔻酰磷脂酰胆碱脂质体中的能力(r = 0.864)优于12 - OH - 硅胶(r = 0.812)和12 - MO - 硅胶(r = 0.817)。IAM.PC.DD柱预测肠道药物吸收的能力(r = 0.788)也优于12 - OH - 硅胶(r = 0.590)和12 - MO - 硅胶(r = 0.681);反相十八烷基硅胶(ODS)柱无法预测肠道吸收(r = 0.1)。总体而言,这些结果表明,含有界面极性基团(即PC、OH和OCH3)的色谱表面可模拟药物与膜的相互作用,但缺乏界面极性官能团的表面(例如ODS表面)则是较差的模型。最有趣的是,药物在辛醇/水系统中的分配与药物与固定化辛醇相的结合不相关。然而,药物在固定化辛醇中的分配与药物在脂质体中的分配相关(r = 0.812)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验