Suppr超能文献

一类新型的基因组稀有切割酶。

A new class of genome rare cutters.

作者信息

Veselkov A G, Demidov V V, Nielson P E, Frank-Kamenetskii M D

机构信息

Center for Advanced Biotechnology and Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA.

出版信息

Nucleic Acids Res. 1996 Jul 1;24(13):2483-7. doi: 10.1093/nar/24.13.2483.

Abstract

Although significant efforts have been directed at developing efficient techniques for rare and super rare genome cutting, only limited success has been achieved. Here we propose a new approach to solve this problem. We demonstrate that peptide nucleic acid 'clamps' (bis-PNAs) bind strongly and sequence specifically to short homopyrimidine sites on lambda and yeast genomic DNAs. Such binding efficiently shields methylation/restriction sites which overlap with the bis-PNA binding sites from enzymatic methylation. After removing the bis-PNA, the genomic DNAs are quantitatively cleaved by restriction enzymes into a limited number of pieces of lengths from several hundred kbp to several Mbp. By combining various bis-PNAs with different methylation/restriction enzyme pairs, a huge new class of genome rare cutters can be created. These cutters cover the range of recognition specificities where very few, if any, cutters are now available.

摘要

尽管已经付出了巨大努力来开发用于稀有和超稀有基因组切割的高效技术,但仅取得了有限的成功。在此,我们提出一种新方法来解决这个问题。我们证明肽核酸“夹子”(双肽核酸)能与λ噬菌体和酵母基因组DNA上的短同嘧啶位点强烈且序列特异性地结合。这种结合有效地保护了与双肽核酸结合位点重叠的甲基化/限制酶切位点不被酶促甲基化。去除双肽核酸后,基因组DNA被限制酶定量切割成数量有限的片段,长度从几百千碱基对到几兆碱基对不等。通过将各种双肽核酸与不同的甲基化/限制酶对相结合,可以创造出一类全新的、大量的基因组稀有切割酶。这些切割酶涵盖了目前几乎没有(如果有的话)切割酶可用的识别特异性范围。

相似文献

1
A new class of genome rare cutters.
Nucleic Acids Res. 1996 Jul 1;24(13):2483-7. doi: 10.1093/nar/24.13.2483.
2
Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation.
Science. 1990 Jul 6;249(4964):73-5. doi: 10.1126/science.2195655.
3
Triple helix-mediated single-site enzymatic cleavage of megabase genomic DNA.
Methods Enzymol. 1992;216:309-21. doi: 10.1016/0076-6879(92)16029-j.
4
Replication dynamics of the yeast genome.
Science. 2001 Oct 5;294(5540):115-21. doi: 10.1126/science.294.5540.115.
5
Yeast artificial chromosome segregation from host chromosomes with similar lengths.
Nucleic Acids Res. 1998 Nov 1;26(21):5011-2. doi: 10.1093/nar/26.21.5011.
6
PNA as a rare genome-cutter.
Nature. 1996 Jan 18;379(6562):214. doi: 10.1038/379214a0.
8
Identification of high affinity Tbf1p-binding sites within the budding yeast genome.
Nucleic Acids Res. 2000 Jul 1;28(13):2519-26. doi: 10.1093/nar/28.13.2519.
9
Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation.
Nature. 1991 Mar 14;350(6314):172-4. doi: 10.1038/350172a0.

引用本文的文献

1
Molecular beacons of xeno-nucleic acid for detecting nucleic acid.
Theranostics. 2013 May 5;3(6):395-408. doi: 10.7150/thno.5935. Print 2013.
3
Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5953-8. doi: 10.1073/pnas.092127999. Epub 2002 Apr 23.
4
Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA.
Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11804-8. doi: 10.1073/pnas.96.21.11804.
5
PD-loop: a complex of duplex DNA with an oligonucleotide.
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5516-20. doi: 10.1073/pnas.95.10.5516.
6
Additive antisense effects of different PNAs on the in vitro translation of the PML/RARalpha gene.
Nucleic Acids Res. 1998 Apr 15;26(8):1934-8. doi: 10.1093/nar/26.8.1934.
7
Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA.
Nucleic Acids Res. 1998 Jan 15;26(2):582-7. doi: 10.1093/nar/26.2.582.
8
Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine.
Nucleic Acids Res. 1997 Nov 15;25(22):4639-43. doi: 10.1093/nar/25.22.4639.
9
Kinetic analysis of specificity of duplex DNA targeting by homopyrimidine peptide nucleic acids.
Biophys J. 1997 Jun;72(6):2763-9. doi: 10.1016/S0006-3495(97)78918-5.

本文引用的文献

1
Solid-phase synthesis of peptide nucleic acids.
J Pept Sci. 1995 May-Jun;1(3):175-83. doi: 10.1002/psc.310010304.
2
PNA as a rare genome-cutter.
Nature. 1996 Jan 18;379(6562):214. doi: 10.1038/379214a0.
3
A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex.
Science. 1995 Dec 15;270(5243):1838-41. doi: 10.1126/science.270.5243.1838.
4
ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2.
Mol Cell Biol. 1993 Oct;13(10):5981-9. doi: 10.1128/mcb.13.10.5981-5989.1993.
5
DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA.
Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1667-70. doi: 10.1073/pnas.90.5.1667.
6
Sequence specific inhibition of DNA restriction enzyme cleavage by PNA.
Nucleic Acids Res. 1993 Jan 25;21(2):197-200. doi: 10.1093/nar/21.2.197.
7
Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping.
Science. 1993 Oct 1;262(5130):110-4. doi: 10.1126/science.8211116.
8
Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature.
Nucleic Acids Res. 1994 Apr 11;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
10
Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA.
Nucleic Acids Res. 1995 Jan 25;23(2):217-22. doi: 10.1093/nar/23.2.217.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验