Narayana S, Hichwa R D, Boles Ponto L L, Ponto J A, Watkins G L
Department of Radiology, University of Iowa, Iowa City 52242, USA.
Med Phys. 1996 Jan;23(1):159-68. doi: 10.1118/1.597793.
Earlier dosimetry estimates for [15O]water assumed its instantaneous equilibrium with total body water. This assumption leads to an underestimation of the absorbed doses to organs with high blood flows, since the biodistribution of this short-lived radiopharmaceutical is dependent upon blood flow to organs. We have developed a physiologically based whole body blood flow model (WBBFM) using a commercially available icon-driven mathematical simulation software package and applied it to the reevaluation of [15O]water dosimetry in humans. The WBBFM uses multiple parallel compartments to represent organs, heart chambers, the injection site for [15O]water, and blood sampling sites (arterial and venous). Input values to the WBBFM include organ blood flows, organ masses, organ water volumes, organ:blood partition coefficients, injected activity and S-values of [15O]. The WBBFM is based on the same assumptions that are used in calculating regional blood flow using [15O]water and simulates the human body closely in its physiologic response. The activity in each organ is derived from the simulation and is used to calculate absorbed doses. The WBBFM calculated absorbed doses in microGy/MBq (mrad/mCi) to various organs are as follows: heart--2.66 (9.84), kidneys--2.20 (8.15), thyroid--1.83 (6.78), brain--1.66 (6.13), ovaries--1.25 (4.61), breast--1.24 (4.59), and small intestine--1.03 (3.83). These values are approximately two- to threefold higher than the earlier estimates of Kearfott [J. Nucl. Med. 23, 1031-1037 (1982)] and similar to the recent findings of Herscovitch et al. [J. Nucl. Med. 34, 155P (1983)]. We believe this approach yields more realistic dosimetry estimates for [15O]water. Accordingly, we have revised the amount of [15O]water administered during regional blood flow studies at our institution. The relative ease and accuracy of this approach suggests its usefulness in dosimetry estimation for other freely diffusible radiopharmaceuticals.
早期对[15O]水的剂量学估计假设其与全身水瞬间达到平衡。这一假设导致对高血流器官吸收剂量的低估,因为这种短寿命放射性药物的生物分布取决于器官的血流情况。我们使用市售的图标驱动数学模拟软件包开发了一个基于生理学的全身血流模型(WBBFM),并将其应用于重新评估人体中[15O]水的剂量学。WBBFM使用多个平行隔室来代表器官、心腔、[15O]水的注射部位以及血液采样部位(动脉和静脉)。WBBFM的输入值包括器官血流、器官质量、器官水体积、器官与血液的分配系数、注入活度以及[15O]的S值。WBBFM基于与使用[15O]水计算局部血流时相同的假设,并在生理反应方面紧密模拟人体。每个器官中的活度由模拟得出,并用于计算吸收剂量。WBBFM计算得出的以微戈瑞/兆贝可(毫拉德/毫居里)为单位的各器官吸收剂量如下:心脏——2.66(9.84),肾脏——2.20(8.15),甲状腺——1.83(6.78),大脑——1.66(6.13),卵巢——1.25(4.61),乳腺——1.24(4.59),小肠——1.03(3.83)。这些值比Kearfott [《核医学杂志》23, 1031 - 1037 (1982)]早期的估计值大约高两到三倍,并且与Herscovitch等人[《核医学杂志》34, 155P (1983)]最近的研究结果相似。我们认为这种方法能得出更符合实际的[15O]水剂量学估计。因此,我们已经修订了我们机构在局部血流研究期间给予的[15O]水的量。这种方法的相对简便性和准确性表明其在其他可自由扩散的放射性药物剂量学估计中的有用性。