Szabó C, Zingarelli B, O'Connor M, Salzman A L
Division of Critical Care, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1753-8. doi: 10.1073/pnas.93.5.1753.
The free radicals nitric oxide and superoxide anion react to form peroxynitrite (ONOO-), a highly toxic oxidant species. In vivo formation of ONOO- has been demonstrated in shock and inflammation. Herein we provide evidence that cytotoxicity in cells exposed to ONOO- is mediated by DNA strand breakage and the subsequent activation of the DNA repair enzyme poly(ADP ribose) synthetase (PARS). Exposure to ONOO- (100 microM to 1 mM) inhibited mitochondrial respiration in cultured J774 macrophages and in rat aortic smooth muscle cells. The loss of cellular respiration was rapid, peaking 1-3 h after ONOO- exposure, and reversible, with recovery after a period of 6-24 h. The inhibition of mitochondrial respiration was paralleled by a dose-dependent increase in DNA strand breakage, reaching its maximum at 20-30 min after exposure to ONOO-. We observed a dose-dependent increase in the activity of PARS in cells exposed to ONOO-. Inhibitors of PARS such as 3-aminobenzamide (1 mM) prevented the inhibition of cellular respiration in cells exposed to ONOO-. Activation of PARS by ONOO--mediated DNA strand breakage resulted in a significant decrease in intracellular energy stores, as reflected by a decline of intracellular NAD+ and ATP content. 3-Aminobenzamide prevented the loss of NAD+ and ATP in cells exposed to ONOO-. In contrast, impairment of cellular respiration by the addition of the nitric oxide donors S-nitroso-N-acetyl-DL-penicillamine or diethyltriamine nitric oxide complex, was not associated with the development of DNA strand breaks, in concentrations up to 1 mM, and was largely refractory to PARS inhibition. Our results suggest that DNA damage and activation of PARS, an energy-consuming futile repair cycle, play a central role in ONOO--mediated cellular injury.
自由基一氧化氮和超氧阴离子反应生成过氧亚硝酸根(ONOO-),这是一种剧毒的氧化物质。在休克和炎症状态下,体内已证实有过氧亚硝酸根的形成。在此我们提供证据表明,暴露于过氧亚硝酸根的细胞中的细胞毒性是由DNA链断裂以及随后DNA修复酶聚(ADP核糖)合成酶(PARS)的激活介导的。暴露于过氧亚硝酸根(100微摩尔至1毫摩尔)会抑制培养的J774巨噬细胞和大鼠主动脉平滑肌细胞中的线粒体呼吸。细胞呼吸的丧失迅速,在过氧亚硝酸根暴露后1 - 3小时达到峰值,并且是可逆的,在6 - 24小时后恢复。线粒体呼吸的抑制与DNA链断裂的剂量依赖性增加同时出现,在暴露于过氧亚硝酸根后20 - 30分钟达到最大值。我们观察到暴露于过氧亚硝酸根的细胞中PARS活性呈剂量依赖性增加。PARS抑制剂如3 - 氨基苯甲酰胺(1毫摩尔)可防止暴露于过氧亚硝酸根的细胞中的细胞呼吸受到抑制。过氧亚硝酸根介导的DNA链断裂导致PARS激活,从而使细胞内能量储备显著减少,这表现为细胞内NAD +和ATP含量的下降。3 - 氨基苯甲酰胺可防止暴露于过氧亚硝酸根的细胞中NAD +和ATP的损失。相比之下,添加一氧化氮供体S - 亚硝基 - N - 乙酰 - DL - 青霉胺或二乙三胺一氧化氮复合物对细胞呼吸的损害,在浓度高达1毫摩尔时与DNA链断裂的发生无关,并且在很大程度上对PARS抑制具有抗性。我们的结果表明,DNA损伤和PARS的激活,即一个耗能的无效修复循环,在过氧亚硝酸根介导的细胞损伤中起核心作用。