Labahn J, Schärer O D, Long A, Ezaz-Nikpay K, Verdine G L, Ellenberger T E
Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts02115, USA.
Cell. 1996 Jul 26;86(2):321-9. doi: 10.1016/s0092-8674(00)80103-8.
Base-excision DNA repair proteins that target alkylation damage act on a variety of seemingly dissimilar adducts, yet fail to recognize other closely related lesions. The 1.8 A crystal structure of the monofunctional DNA glycosylase AlkA (E. coli 3-methyladenine-DNA glycosylase II) reveals a large hydrophobic cleft unusually rich in aromatic residues. An Asp residue projecting into this cleft is essential for catalysis, and it governs binding specificity for mechanism-based inhibitors. We propose that AlkA recognizes electron-deficient methylated bases through pi-donor/acceptor interactions involving the electron-rich aromatic cleft. Remarkably, AlkA is similar in fold and active site location to the bifunctional glycosylase/lyase endonuclease III, suggesting the two may employ fundamentally related mechanisms for base excision.
靶向烷基化损伤的碱基切除DNA修复蛋白作用于多种看似不同的加合物,但无法识别其他密切相关的损伤。单功能DNA糖基化酶AlkA(大肠杆菌3-甲基腺嘌呤-DNA糖基化酶II)的1.8埃晶体结构显示出一个异常富含芳香族残基的大疏水裂缝。一个伸入该裂缝的天冬氨酸残基对催化至关重要,并且它决定了基于机制的抑制剂的结合特异性。我们提出,AlkA通过涉及富含电子的芳香裂缝的π供体/受体相互作用识别缺电子的甲基化碱基。值得注意的是,AlkA在折叠和活性位点位置上与双功能糖基化酶/裂解酶内切核酸酶III相似,这表明两者可能采用基本相关的碱基切除机制。