Butler S L, Falke J J
Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA.
Biochemistry. 1996 Aug 20;35(33):10595-600. doi: 10.1021/bi961107v.
Chemical stabilizers are widely used to enhance protein stability, both in nature and in the laboratory. Here, the molecular mechanism of chemical stabilizers is studied using a disulfide trapping assay to measure the effects of stabilizers on thermal backbone dynamics in the Escherichia coli galactose/ glucose binding protein. Two types of backbone fluctuations are examined: (a) relative movements of adjacent surface alpha-helices within the same domain and (b) interdomain twisting motions. Both types of fluctuations are significantly reduced by all six stabilizers tested (glycerol, sucrose, trehalose, L-glucose, D-glucose, and D-galactose), and in each case larger amplitude motions are inhibited more than smaller ones. Motional inhibition does not require a high-affinity stabilizer binding site, indicating that the effects of stabilizers are nonspecific. Overall, the results support the theory that effective stabilizing agents act by favoring the most compact structure of a protein, thereby reducing local backbone fluctuations away from the fully folded state. Such inhibition of protein backbone dynamics may be a general mechanism of protein stabilization in extreme thermal or chemical environments.
化学稳定剂在自然界和实验室中都被广泛用于提高蛋白质的稳定性。在此,利用二硫键捕获试验研究化学稳定剂的分子机制,以测量稳定剂对大肠杆菌半乳糖/葡萄糖结合蛋白热主链动力学的影响。研究了两种类型的主链波动:(a)同一结构域内相邻表面α螺旋的相对运动,以及(b)结构域间的扭转运动。所测试的所有六种稳定剂(甘油、蔗糖、海藻糖、L-葡萄糖、D-葡萄糖和D-半乳糖)都能显著降低这两种类型的波动,并且在每种情况下,较大幅度的运动比较小幅度的运动受到的抑制更多。运动抑制并不需要高亲和力的稳定剂结合位点,这表明稳定剂的作用是非特异性的。总体而言,结果支持这样一种理论,即有效的稳定剂通过促进蛋白质最紧密的结构起作用,从而减少主链局部偏离完全折叠状态的波动。这种对蛋白质主链动力学的抑制可能是在极端热或化学环境中蛋白质稳定化的一种普遍机制。