Correa J G, Biscardi A M, Stoppani A O
Facultad de Medicina, Universidad de Buenos Aires.
Medicina (B Aires). 1995;55(5 Pt 1):397-407.
Inactivation of lipoamide dehydrogenase (LipDH) by the Cu(II)/H2O2 Fenton system (SF-Cu(II): (5.0 microM Cu(II), 3.0 mM H2O2) was enhanced by catecholamines (CAs), namely, epinephrine, levoDOPA (DOPA), DOPAMINE, 6-hydroxyDOPAMINE (OH-DOPAMINE) and related compounds (DOPAC, CATECHOL, etc.). After 5 min incubation with the Cu(II)/H2O2/CA system (0.4 mM CA), the enzyme activity decayed as indicated by the following percentage values (mean +/- S.D.; in parenthesis, number of determinations): SF-Cu(II) alone, 43 +/- 10 (18); SF-Cu(II) + epinephrine, 80 +/- 9 (5); SF-Cu(II) + DOPA, 78 +/- 2 (4); SF + Cu(II) + DOPAMINE, 88 +/- 7 (5); SF-Cu(II) + OH-DOPAMINE 87 +/- 6 (7); SF-Cu(II) +/- DOPAC, 88 +/- 3 (6); SF-Cu(II) + catechol, 85 +/- 6 (5). In all cases P < 0.05, with respect to the SF-Cu(II) control sample. CAs effect was concentration-dependent and at the 0-100 microM concentration range, it varied with the CA structure. Above the 100 microM concentration, CAs were equally effective and produced 90-100% enzyme, inactivation (Figure 2). In the absence of oxy-radical generation, the enzyme specific activity (mean +/- S.D.) was 149 +/- 10 (24) mumol NADH/min/mg protein. Assay of HO. production by the Cu(II)/H2O2/CA system in the presence of deoxyribose (TBA assay) yielded values much greater than those obtained omitting CA. Hydroxyl radical production depended on the presence of Cu(II) and H2O2 and significant H. values were obtained with OH-DOPAMINE, DOPAC, epinephrine, DOPAMINE, DOPA and catecol supplemented systems (Table 2). LipDH (1.0 microM) inhibited 50-80% deoxyribose oxidation, the inhibition depending on the CA structure (Table 2). Native catalase (20 micrograms/ml) and bovine serum albumin (40 micrograms/ml) effectively prevented LipDH inactivation by the Cu(II)/H2O2/CA system; denaturated catalase, SOD, 0.3 M mannitol, 6.0 mM ethanol and 0.2 M benzoate were less effective or did not protect LipDH (Table 3). Incubation of CAs with the Cu(II)/H2O2 system produced a time and Cu(II)-dependent destruction of CAs, the corresponding o-quinone, production as illustrated with epinephrine (figures 6 and 7), as illustrated with epinephrine and DOPAMINE (Table 4). These results support LipDH inactivation by (a) reduction of Cu(II) to Cu(I) by CAs followed by Cu-catalyzed production of HO. from H2O2; (b) CA oxidation followed by the corresponding o-quinone interaction with LipDH. CAPTOPRIL, N-acetylcysteine, mercaptopropionylglycine and penicillamine prevented to various degree LipDH inactivation by the Cu(II)/H2O2/CA systems (Table 1). The former was the most effective and 0.4 mM CAPTOPRIL prevented about 95-100% the effect of Cu(II)/H2O2/CA systems supplemented with epinephrine, DOPAMINE and OH-DOPAMINE (Figures 3 and Table 1). LipDH increased and CAPTOPRIL inhibited epinephrine oxidation by Cu(II)/H2O2 (Figures 4 and 5). Since un-physiological concentrations of CAs and Cu(II) may be released in the myocardium after ischemia-reperfusion, the summarized observations may contribute to explain myocardial damage in that condition.
儿茶酚胺(CAs),即肾上腺素、左旋多巴(DOPA)、多巴胺、6 - 羟基多巴胺(OH - DOPAMINE)及相关化合物(DOPAC、儿茶酚等)可增强铜(II)/过氧化氢芬顿体系(SF - Cu(II):5.0微摩尔/升铜(II),3.0毫摩尔/升过氧化氢)对硫辛酰胺脱氢酶(LipDH)的失活作用。在与铜(II)/过氧化氢/儿茶酚胺体系(0.4毫摩尔/升儿茶酚胺)孵育5分钟后,酶活性下降,具体下降百分比数值如下(平均值±标准差;括号内为测定次数):单独的SF - Cu(II),43±10(18);SF - Cu(II)+肾上腺素,80±9(5);SF - Cu(II)+DOPA,78±2(4);SF + Cu(II)+多巴胺,88±7(5);SF - Cu(II)+OH - DOPAMINE 87±6(7);SF - Cu(II)+/-DOPAC,88±(6);SF - Cu(II)+儿茶酚,85±6(5)。在所有情况下,与SF - Cu(II)对照样品相比,P<0.05。儿茶酚胺的作用呈浓度依赖性,在0 - 100微摩尔/升浓度范围内,其作用随儿茶酚胺结构而变化。高于100微摩尔/升浓度时,儿茶酚胺同样有效,可使酶失活90 - 100%(图2)。在不产生氧自由基的情况下,酶的比活性(平均值±标准差)为149±10(24)微摩尔NADH/分钟/毫克蛋白。在脱氧核糖存在下,通过铜(II)/过氧化氢/儿茶酚胺体系测定羟基自由基(HO·)的产生(TBA测定法),得到的值远大于省略儿茶酚胺时获得的值。羟基自由基的产生取决于铜(II)和过氧化氢的存在,在补充了OH - DOPAMINE、DOPAC、肾上腺素、多巴胺、DOPA和儿茶酚的体系中获得了显著的HO·值(表2)。LipDH(1.0微摩尔/升)抑制50 - 80%的脱氧核糖氧化,抑制作用取决于儿茶酚胺结构(表2)。天然过氧化氢酶(20微克/毫升)和牛血清白蛋白(40微克/毫升)可有效防止铜(II)/过氧化氢/儿茶酚胺体系对LipDH的失活作用;变性过氧化氢酶、超氧化物歧化酶、0.3摩尔/升甘露醇、6.0毫摩尔/升乙醇和0.2摩尔/升苯甲酸盐效果较差或不能保护LipDH(表3)。儿茶酚胺与铜(II)/过氧化氢体系孵育会产生时间和铜(II)依赖性儿茶酚胺的破坏,相应邻醌的产生如肾上腺素所示(图6和7),如肾上腺素和多巴胺所示(表4)。这些结果支持通过以下方式使LipDH失活:(a)儿茶酚胺将铜(II)还原为铜(I),随后铜催化过氧化氢产生HO·;(b)儿茶酚胺氧化,随后相应邻醌与LipDH相互作用。卡托普利、N - 乙酰半胱氨酸、巯基丙酰甘氨酸和青霉胺在不同程度上可防止铜(II)/过氧化氢/儿茶酚胺体系对LipDH的失活作用(表1)。前者最为有效,0.4毫摩尔/升卡托普利可防止补充了肾上腺素、多巴胺和OH - DOPAMINE的铜(II)/过氧化氢/儿茶酚胺体系约95 - 100%的作用(图3和表1)。LipDH可增强卡托普利对铜(II)/过氧化氢氧化肾上腺素的抑制作用(图4和5)。由于缺血再灌注后心肌中可能会释放非生理浓度的儿茶酚胺和铜(II),上述总结的观察结果可能有助于解释该情况下的心肌损伤。