Suppr超能文献

成年大鼠海马CA1锥体神经元动作电位后去极化及爆发式放电的离子基础

Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.

作者信息

Azouz R, Jensen M S, Yaari Y

机构信息

Department of Physiology, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel.

出版信息

J Physiol. 1996 Apr 1;492 ( Pt 1)(Pt 1):211-23. doi: 10.1113/jphysiol.1996.sp021302.

Abstract
  1. Intracellular recordings in adult rat hippocampal slices were used to identify the ionic conductances underlying active spike after-depolarization (ADP) and intrinsic burst firing in the somata of CA1 pyramidal cells (PCs). To test the 'Ca2+ hypothesis', Ca2+ currents were suppressed by replacing the Ca2+ in the saline with either Mn2+ or Mg2+. Alternatively, the inorganic Ca2+ channel blockers Cd2+ (0.5 mM) or Ni2+ (2 mM) were added to the saline. To test the 'Na+ hypothesis', Na+ currents were blocked with tetrodotoxin (TTX; 0.5 microM). 2. The suppression of Ca2+ currents blocked the fast after-hyperpolarization (AHP) generated by the fast Ca(2+)-gated K+ current Ic, while enhancing the amplitude and duration of active spike ADPS. 3. Evoked and spontaneous burst firing was preserved undiminished following Ca2+ current suppression, while the propensity to fire bursts increased in many cases. The postburst medium AHP (generated primarily by the muscarine-sensitive voltage-gated K+ current, IM) was not affected by this treatment, which blocked the slow AHP (generated by the slow Ca(2+)-gated K+ current, IAHP). 4. TTX strongly suppressed active ADPs and intrinsic bursts before substantially reducing the threshold, rate of rise and amplitude of solitary spikes. 5. In Ca(2+)-free saline, caesium-filled PCs generated large, plateau ADPs following an initial burst of fast spikes. Application of TTX suppressed these ADPs before solitary fast spikes appeared to be reduced. 6. Injection of brief, just subthreshold depolarizing current pulses into bursters evoked slow depolarizing potentials lasting up to 50 ms. These persisted after suppression of Ca2+ currents and were entirely blocked by TTX. 7. We conclude that active spike ADPs and intrinsic bursts in the somata of adult CA1 PCs are generated by a low voltage-gated, persistent Na+ current. Burst termination is mediated by voltage-gated K+ currents activated during the burst (most likely IM), rather than by the Ca(2+)-gated K+ currents Ic and IAHP. The latter currents downregulate the innate tendency of CA1 PCs to burst (Ic) and limit the rate of spontaneous burst firing (IAHP).
摘要
  1. 采用成年大鼠海马脑片细胞内记录技术,以确定CA1锥体细胞(PCs)胞体中动作电位后去极化(ADP)和内在簇状放电背后的离子电导。为验证“Ca2+假说”,用Mn2+或Mg2+替代盐溶液中的Ca2+以抑制Ca2+电流。或者,向盐溶液中添加无机Ca2+通道阻滞剂Cd2+(0.5 mM)或Ni2+(2 mM)。为验证“Na+假说”,用河豚毒素(TTX;0.5 microM)阻断Na+电流。2. Ca2+电流的抑制阻断了由快速Ca(2+)-门控K+电流Ic产生的快速超极化后电位(AHP),同时增强了动作电位ADP的幅度和持续时间。3. Ca2+电流抑制后,诱发和自发的簇状放电未减弱,且在许多情况下簇状放电的倾向增加。簇状放电后的中等AHP(主要由毒蕈碱敏感性电压门控K+电流IM产生)不受该处理影响,该处理阻断了缓慢AHP(由缓慢Ca(2+)-门控K+电流IAHP产生)。4. TTX在大幅降低单个动作电位的阈值、上升速率和幅度之前,强烈抑制了动作电位ADP和内在簇状放电。5. 在无Ca2+盐溶液中,充铯的PCs在一阵快速动作电位初始爆发后产生大的平台期ADP。在单个快速动作电位似乎降低之前,应用TTX抑制了这些ADP。6. 向簇状放电细胞中注入短暂的、刚好低于阈值的去极化电流脉冲,诱发持续长达50 ms的缓慢去极化电位。这些电位在Ca2+电流抑制后持续存在,并被TTX完全阻断。7. 我们得出结论,成年CA1 PCs胞体中的动作电位ADP和内在簇状放电由低电压门控的持续性Na+电流产生。簇状放电的终止由簇状放电期间激活的电压门控K+电流(最可能是IM)介导,而非由Ca(2+)-门控K+电流Ic和IAHP介导。后两种电流下调CA1 PCs簇状放电的内在倾向(Ic)并限制自发簇状放电的速率(IAHP)。

相似文献

1
Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.
J Physiol. 1996 Apr 1;492 ( Pt 1)(Pt 1):211-23. doi: 10.1113/jphysiol.1996.sp021302.
2
Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.
J Physiol. 1996 Apr 1;492 ( Pt 1)(Pt 1):199-210. doi: 10.1113/jphysiol.1996.sp021301.
3
Modulation of endogenous firing patterns by osmolarity in rat hippocampal neurones.
J Physiol. 1997 Jul 1;502 ( Pt 1)(Pt 1):175-87. doi: 10.1111/j.1469-7793.1997.175bl.x.
5
Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons.
J Neurosci. 2001 Jun 15;21(12):4173-82. doi: 10.1523/JNEUROSCI.21-12-04173.2001.
6
An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells.
J Physiol. 1989 Feb;409:171-90. doi: 10.1113/jphysiol.1989.sp017491.
7
Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus.
J Physiol. 1995 Mar 1;483 ( Pt 2)(Pt 2):421-41. doi: 10.1113/jphysiol.1995.sp020595.
8
Intrinsic membrane potential oscillations in hippocampal neurons in vitro.
Brain Res. 1991 Jul 12;553(2):261-74. doi: 10.1016/0006-8993(91)90834-i.
9
Mechanisms for signal transformation in lemniscal auditory thalamus.
J Neurophysiol. 1996 Dec;76(6):3597-608. doi: 10.1152/jn.1996.76.6.3597.
10
Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
J Physiol. 1987 Apr;385:733-59. doi: 10.1113/jphysiol.1987.sp016517.

引用本文的文献

1
Interleaved single and bursting spiking resonance in neurons.
PLoS Comput Biol. 2025 May 22;21(5):e1013126. doi: 10.1371/journal.pcbi.1013126. eCollection 2025 May.
2
Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers.
Pflugers Arch. 2024 Oct;476(10):1445-1473. doi: 10.1007/s00424-024-02980-7. Epub 2024 Jul 5.
3
Superconducting Bio-Inspired Au-Nanowire-Based Neurons.
Nanomaterials (Basel). 2022 May 13;12(10):1671. doi: 10.3390/nano12101671.
4
A hypothesis concerning distinct schemes of olfactory activation evoked by perceived versus nonperceived input.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2120093119. doi: 10.1073/pnas.2120093119. Epub 2022 Mar 1.
6
Neural Burst Firing and Its Roles in Mental and Neurological Disorders.
Front Cell Neurosci. 2021 Sep 27;15:741292. doi: 10.3389/fncel.2021.741292. eCollection 2021.
7
Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors.
Epilepsia Open. 2022 Aug;7 Suppl 1(Suppl 1):S23-S33. doi: 10.1002/epi4.12539. Epub 2021 Oct 22.
8
Oxaliplatin Depolarizes the IB4 Dorsal Root Ganglion Neurons to Drive the Development of Neuropathic Pain Through TRPM8 in Mice.
Front Mol Neurosci. 2021 Jun 4;14:690858. doi: 10.3389/fnmol.2021.690858. eCollection 2021.
9
T-Type Calcium Channels Contribute to Burst Firing in a Subpopulation of Medial Habenula Neurons.
eNeuro. 2020 Aug 12;7(4). doi: 10.1523/ENEURO.0201-20.2020. Print 2020 Jul/Aug.

本文引用的文献

1
Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing.
J Neurophysiol. 1961 May;24:243-59. doi: 10.1152/jn.1961.24.3.243.
2
Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells.
J Physiol. 1996 Apr 1;492 ( Pt 1)(Pt 1):199-210. doi: 10.1113/jphysiol.1996.sp021301.
4
Variations in electrophysiological properties of hippocampal neurons in different subfields.
Brain Res. 1982 Jun 24;242(2):341-4. doi: 10.1016/0006-8993(82)90320-1.
5
Afterpotential generation in hippocampal pyramidal cells.
J Neurophysiol. 1981 Jan;45(1):86-97. doi: 10.1152/jn.1981.45.1.86.
7
Depolarizing prepotentials are Na+ dependent in CA1 pyramidal neurons.
Brain Res. 1985 May 6;333(2):378-81. doi: 10.1016/0006-8993(85)91597-5.
8
Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells.
J Physiol. 1987 Apr;385:733-59. doi: 10.1113/jphysiol.1987.sp016517.
9
Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons.
J Neurophysiol. 1986 Jun;55(6):1268-82. doi: 10.1152/jn.1986.55.6.1268.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验