Suppr超能文献

大鼠下丘脑神经元热敏感性的细胞机制。

Cellular mechanisms for neuronal thermosensitivity in the rat hypothalamus.

作者信息

Griffin J D, Kaple M L, Chow A R, Boulant J A

机构信息

Department of Physiology, College of Medicine, Ohio State University, Columbus 43210, USA.

出版信息

J Physiol. 1996 Apr 1;492 ( Pt 1)(Pt 1):231-42. doi: 10.1113/jphysiol.1996.sp021304.

Abstract
  1. To study the basic mechanisms of neuronal thermosensitivity, rat hypothalamic tissue slices were used to record and compare intracellular activity of temperature-sensitive and -insensitive neurones. This study tested the hypothesis that different neuronal types have thermally dependent differences in the transient potentials that determine the interspike interval. 2. Most spontaneously firing neurones displayed depolarizing prepotentials that preceded each action potential. In warm-sensitive neurones, warming increased the rate of rise of the depolarizing prepotential which, in turn, decreased the interspike interval and increased the firing rate. In contrast, temperature had little or no effect on the rate of rise in prepotentials of temperature-insensitive neurones. 3. Prepotential depolarization can be due to increasing depolarizing conductances or decreasing hyperpolarizing conductances. These are differences in the ionic conductances responsible for prepotentials in temperature-sensitive and -insensitive neurones. In warm-sensitive neurones, the net ionic conductance decreased as the prepotential depolarized towards threshold, suggesting that the prepotential is primarily determined by a decrease in outward potassium conductances. In contrast, in low-slope temperature-insensitive neurones, the net conductance remained constant during the interspike interval, suggesting a more balanced combination of both depolarizing and hyperpolarizing conductances. 4. Transient outward potassium currents, including A-currents, are important determinants of neuronal firing rates. These currents were identified in all warm-sensitive neurones tested, as well as in many temperature-insensitive and silent neurones. Since warming increased the rates of inactivation of these currents, transient K+ currents may contribute to the temperature-dependent prepotentials of some hypothalamic neurones.
摘要
  1. 为研究神经元热敏感性的基本机制,使用大鼠下丘脑组织切片记录并比较温度敏感和不敏感神经元的细胞内活性。本研究检验了这样一个假设,即不同类型的神经元在决定峰间期的瞬态电位方面存在热依赖性差异。2. 大多数自发放电神经元在每个动作电位之前都表现出去极化预电位。在温度敏感神经元中,升温会增加去极化预电位的上升速率,这反过来又会缩短峰间期并提高放电频率。相比之下,温度对温度不敏感神经元预电位的上升速率几乎没有影响。3. 预电位去极化可能是由于去极化电导增加或超极化电导降低。这些是温度敏感和不敏感神经元中负责预电位的离子电导的差异。在温度敏感神经元中,随着预电位向阈值去极化,净离子电导降低,这表明预电位主要由外向钾电导的降低所决定。相比之下,在低斜率温度不敏感神经元中,净电导在峰间期保持恒定,这表明去极化和超极化电导的组合更为平衡。4. 包括A电流在内的瞬态外向钾电流是神经元放电频率的重要决定因素。在所有测试的温度敏感神经元以及许多温度不敏感和静息神经元中都发现了这些电流。由于升温会增加这些电流的失活速率,瞬态钾电流可能有助于某些下丘脑神经元的温度依赖性预电位。

相似文献

6
Hypothalamic neurons. Mechanisms of sensitivity to temperature.下丘脑神经元。对温度的敏感机制。
Ann N Y Acad Sci. 1998 Sep 29;856:108-115. doi: 10.1111/j.1749-6632.1998.tb08319.x.

引用本文的文献

1
Thermal effects on neurons during stimulation of the brain.脑刺激过程中神经元的热效应。
J Neural Eng. 2022 Oct 7;19(5):056029. doi: 10.1088/1741-2552/ac9339.
4
A synaptic temperature sensor for body cooling.一种用于身体降温的突触温度传感器。
Neuron. 2021 Oct 20;109(20):3283-3297.e11. doi: 10.1016/j.neuron.2021.10.001.
7
Central control of body temperature.体温的中枢控制
F1000Res. 2016 May 12;5. doi: 10.12688/f1000research.7958.1. eCollection 2016.
9
Novel aspects of brown adipose tissue biology.棕色脂肪组织生物学的新方面。
Endocrinol Metab Clin North Am. 2013 Mar;42(1):89-107. doi: 10.1016/j.ecl.2012.11.004. Epub 2012 Dec 12.

本文引用的文献

4
Temperature receptors in the central nervous system.中枢神经系统中的温度感受器。
Annu Rev Physiol. 1986;48:639-54. doi: 10.1146/annurev.ph.48.030186.003231.
7
The use of the patch clamp technique to study second messenger-mediated cellular events.
Neuroscience. 1988 Sep;26(3):727-34. doi: 10.1016/0306-4522(88)90094-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验