Blandini F, Porter R H, Greenamyre J T
Neurological Institute C. Mondino, University of Pavia, Italy.
Mol Neurobiol. 1996 Feb;12(1):73-94. doi: 10.1007/BF02740748.
Altered glutamatergic neurotransmission and neuronal metabolic dysfunction appear to be central to the pathophysiology of Parkinson's disease (PD). The substantia nigra pars compacta--the area where the primary pathological lesion is located--is particularly exposed to oxidative stress and toxic and metabolic insults. A reduced capacity to cope with metabolic demands, possibly related to impaired mitochondrial function, may render nigral highly vulnerable to the effects of glutamate, which acts as a neurotoxin in the presence of impaired cellular energy metabolism. In this way, glutamate may participate in the pathogenesis of PD. Degeneration of dopamine nigral neurons is followed by striatal dopaminergic denervation, which causes a cascade of functional modifications in the activity of basal ganglia nuclei. As an excitatory neurotransmitter, glutamate plays a pivotal role in normal basal ganglia circuitry. With nigrostriatal dopaminergic depletion, the glutamatergic projections from subthalamic nucleus to the basal ganglia output nuclei become overactive and there are regulatory changes in glutamate receptors in these regions. There is also evidence of increased glutamatergic activity in the striatum. In animal models, blockade of glutamate receptors ameliorates the motor manifestations of PD. Therefore, it appears that abnormal patterns of glutamatergic neurotransmission are important in the symptoms of PD. The involvement of the glutamatergic system in the pathogenesis and symptomatology of PD provides potential new targets for therapeutic intervention in this neurodegenerative disorder.
谷氨酸能神经传递改变和神经元代谢功能障碍似乎是帕金森病(PD)病理生理学的核心。黑质致密部——原发性病理损害所在区域——特别容易受到氧化应激以及毒性和代谢损伤。应对代谢需求的能力下降,可能与线粒体功能受损有关,这可能使黑质对谷氨酸的作用高度敏感,在细胞能量代谢受损的情况下,谷氨酸可作为一种神经毒素。通过这种方式,谷氨酸可能参与了PD的发病机制。多巴胺能黑质神经元变性后会导致纹状体多巴胺能去神经支配,进而引起基底神经节核团活动的一系列功能改变。作为一种兴奋性神经递质,谷氨酸在正常的基底神经节回路中起关键作用。随着黑质纹状体多巴胺能缺失,从丘脑底核到基底神经节输出核的谷氨酸能投射变得过度活跃,并且这些区域的谷氨酸受体存在调节性变化。也有证据表明纹状体中谷氨酸能活性增加。在动物模型中,阻断谷氨酸受体会改善PD的运动表现。因此,谷氨酸能神经传递的异常模式似乎在PD症状中起重要作用。谷氨酸能系统参与PD的发病机制和症状学,为这种神经退行性疾病的治疗干预提供了潜在的新靶点。