Suppr超能文献

基于转录组的生物标志物预测帕金森病的基因组规模代谢建模。

Transcriptome-based biomarker prediction for Parkinson's disease using genome-scale metabolic modeling.

机构信息

Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.

出版信息

Sci Rep. 2024 Jan 5;14(1):585. doi: 10.1038/s41598-023-51034-y.

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Identification of PD biomarkers is crucial for early diagnosis and to develop target-based therapeutic agents. Integrative analysis of genome-scale metabolic models (GEMs) and omics data provides a computational approach for the prediction of metabolite biomarkers. Here, we applied the TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) algorithm and two modified versions of TIMBR to investigate potential metabolite biomarkers for PD. To this end, we mapped thirteen post-mortem PD transcriptome datasets from the substantia nigra region onto Human-GEM. We considered a metabolite as a candidate biomarker if its production was predicted to be more efficient by a TIMBR-family algorithm in control or PD case for the majority of the datasets. Different metrics based on well-known PD-related metabolite alterations, PD-associated pathways, and a list of 25 high-confidence PD metabolite biomarkers compiled from the literature were used to compare the prediction performance of the three algorithms tested. The modified algorithm with the highest prediction power based on the metrics was called TAMBOOR, TrAnscriptome-based Metabolite Biomarkers by On-Off Reactions, which was introduced for the first time in this study. TAMBOOR performed better in terms of capturing well-known pathway alterations and metabolite secretion changes in PD. Therefore, our tool has a strong potential to be used for the prediction of novel diagnostic biomarkers for human diseases.

摘要

帕金森病(PD)是世界上第二常见的神经退行性疾病。鉴定 PD 生物标志物对于早期诊断和开发基于靶点的治疗药物至关重要。整合基因组规模代谢模型(GEM)和组学数据的分析为代谢物生物标志物的预测提供了一种计算方法。在这里,我们应用了 TIMBR(转录推断代谢生物标志物反应)算法和 TIMBR 的两个修改版本来研究 PD 的潜在代谢物生物标志物。为此,我们将 13 个来自黑质区域的 PD 转录组数据集映射到 Human-GEM 上。如果 TIMBR 家族算法预测代谢物的产生在大多数数据集的对照或 PD 病例中更有效,则将其视为候选生物标志物。基于已知的 PD 相关代谢物改变、与 PD 相关的途径以及从文献中编译的 25 种高可信度 PD 代谢物生物标志物列表,使用不同的指标来比较所测试的三种算法的预测性能。基于该指标具有最高预测能力的修改算法被称为 TAMBOOR,即基于转录组的代谢物生物标志物通过开-关反应,这是该研究首次引入的。TAMBOOR 在捕获 PD 中已知途径改变和代谢物分泌变化方面表现更好。因此,我们的工具具有很强的潜力可用于预测人类疾病的新型诊断生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1428/10770157/fc236367a0bc/41598_2023_51034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验