Suppr超能文献

滑龟小脑渗透压变化后的水分配与细胞外曲折度

Water compartmentalization and extracellular tortuosity after osmotic changes in cerebellum of Trachemys scripta.

作者信息

Krizaj D, Rice M E, Wardle R A, Nicholson C

机构信息

Department of Physiology and Biophysics, New York University Medical Center, NY 10016, USA.

出版信息

J Physiol. 1996 May 1;492 ( Pt 3)(Pt 3):887-96. doi: 10.1113/jphysiol.1996.sp021354.

Abstract
  1. Water compartmentalization in the turtle cerebellum subject to media of different osmolalities was quantified by combining extracellular diffusion analysis with wet weight and dry weight measurements. The diffusion analysis also determined the tortuosity of the extracellular space. 2. Isolated cerebella were immersed in normal, oxygenated physiological saline (302 mosmol kg-1), hypotonic saline (238 mosmol kg-1) and a series of hypertonic salines (up to 668 mosmol kg-1). The osmolality was varied by altering the NaCl content. 3. Extracellular volume fraction and tortuosity of the granular layer of the cerebellum were determined from measurements of ionophoretically induced diffusion profiles of tetramethylammonium, using ion-selective microelectrodes. The volume fraction was 0.22 in normal saline, 0.12 in hypotonic medium and 0.60 in the most hypertonic medium. Tortuosity was 1.70 in the normal saline, 1.79 in the hypotonic and 1.50 in the most hypertonic saline. 4. The water content, defined as (wet weight-dry weight)/wet weight, of a typical isolated cerebellum (including granular, Purkinje cell and molecular layers) was 82.9%. It increased to 85.2% in hypotonic saline and decreased to 80.1% in the most hypertonic saline. 5. Measurements of extracellular volume fraction and water content were combined to show that hypotonic solutions caused water to move from the extracellular to the intracellular compartment while hypertonic solutions caused water to move from the intracellular to extracellular compartment, with only a relatively small changes in total water in both cases. 6. These results suggest the use of the isolated turtle cerebellum as a model system for studying light scattering or diffusion-weighted magnetic resonance imaging.
摘要
  1. 通过将细胞外扩散分析与湿重和干重测量相结合,对处于不同渗透压介质中的龟小脑的水分区室化进行了量化。扩散分析还确定了细胞外空间的曲折度。2. 将分离的小脑浸入正常的、充氧的生理盐水(302 毫摩尔/千克)、低渗盐水(238 毫摩尔/千克)和一系列高渗盐水(高达 668 毫摩尔/千克)中。通过改变氯化钠含量来改变渗透压。3. 使用离子选择性微电极,根据四甲基铵离子电泳诱导的扩散曲线测量结果,确定小脑颗粒层的细胞外体积分数和曲折度。在生理盐水中体积分数为 0.22,在低渗介质中为 0.12,在最高渗介质中为 0.60。在生理盐水中曲折度为 1.70,在低渗中为 1.79,在最高渗盐水中为 1.50。4. 一个典型的分离小脑(包括颗粒层、浦肯野细胞层和分子层)的含水量定义为(湿重 - 干重)/湿重,为 82.9%。在低渗盐水中增加到 85.2%,在最高渗盐水中降低到 80.1%。5. 结合细胞外体积分数和含水量的测量结果表明,低渗溶液导致水从细胞外转移到细胞内区室,而高渗溶液导致水从细胞内转移到细胞外区室,在这两种情况下总水量的变化都相对较小。6. 这些结果表明,分离的龟小脑可作为研究光散射或扩散加权磁共振成像的模型系统。

相似文献

10
[Intracranial pressure and hypotonic infusion solutions].[颅内压与低渗输液溶液]
Anaesthesist. 2009 Apr;58(4):405-9. doi: 10.1007/s00101-009-1524-1.

引用本文的文献

10
Diffusion in brain extracellular space.脑外间隙中的扩散
Physiol Rev. 2008 Oct;88(4):1277-340. doi: 10.1152/physrev.00027.2007.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验