Suppr超能文献

MIXREG:一个用于具有自相关误差的混合效应回归分析的计算机程序。

MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.

作者信息

Hedeker D, Gibbons R D

机构信息

Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago 60612-7260, USA.

出版信息

Comput Methods Programs Biomed. 1996 May;49(3):229-52. doi: 10.1016/0169-2607(96)01723-3.

Abstract

MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.

摘要

MIXREG是一个程序,用于为包含自相关误差的正态分布响应数据的混合效应回归模型(MRM)提供估计值。该模型可用于分析不平衡纵向数据,其中个体可能在不同数量的时间点进行测量,甚至在不同的时间点进行测量。允许一般形式的自相关误差或遵循AR(1)、MA(1)或ARMA(1,1)形式的自相关误差。该模型还可用于分析聚类数据,其中混合效应模型假定聚类内的数据是相关的。相关性程度与通常模型参数的估计值一起进行估计,从而对聚类进行调整。MIXREG使用最大边际似然估计,同时利用期望最大化(EM)算法和费舍尔评分解。对于评分解,随机效应的协方差矩阵以其高斯分解形式表示,对角矩阵使用指数变换重新参数化。个体随机效应的估计使用经验贝叶斯方法完成。文中提供了说明MIXREG用法和特征的示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验