Suppr超能文献

Effects of an arginine-glycine-aspartic acid peptide-containing artificial matrix on epithelial migration in vitro and experimental second-degree burn wound healing in vivo.

作者信息

Mertz P M, Davis S C, Franzen L, Uchima F D, Pickett M P, Pierschbacher M D, Polarek J W

机构信息

University of Miami, Department of Dermatology and Cutaneous Surgery, FL, USA.

出版信息

J Burn Care Rehabil. 1996 May-Jun;17(3):199-206. doi: 10.1097/00004630-199605000-00004.

Abstract

Cells central to dermal tissue repair such as dermal fibroblasts and keratinocytes interact with arginine-glycine-aspartic acid (RGD)-containing proteins of the extracellular matrix such as fibronectin. It has been shown that synthetic peptides containing this RGD sequence can also support cell attachment and migration in vitro. We therefore set out to test whether the use of these peptides, when formulated as a synthetic RGD-peptide matrix consisting of peptide complexed with hyaluronic acid, would have an effect on the rate of epithelial migration and healing of experimental wounds. Evaluation consisted of measuring he extent of epithelial outgrowth from human dermal explants and the epithelization of experimental second-degree burn wounds in pigs. We show here that the RGD-peptide matrix supports epithelial sheet migration from explants in a dose-dependent manner. In second-degree burn wounds in pigs, wounds treated with daily applications of the RGD-peptide matrix under occlusion resurfaced at a significantly faster rate (day 7 = 57% completely epithelized) than wounds treated with hyaluronic acid under occlusion (day 7 = 13% completely epithelized, p < 0.01), occlusion alone (day 7 = 13% completely epithelized, p < 0.01), or air exposed (day 7 = 0% completely epithelized, p < 0.001). Histologic examination showed that wounds treated with the RGD-peptide matrix also had thicker epithelial covering and greater granulation tissue deposition than occluded, air-exposed, and hyaluronate-treated wounds. These data therefore show that the use of RGD-peptide matrix induces faster explant epithelial migration and results in faster healing of experimental second-degree burns.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验