Tafeit E, Estelberger W, Horejsi R, Moeller R, Oettl K, Vrecko K, Reibnegger G
Medizinisch-Chemisches Institut, Karl-Franzens-Universität Graz, Austria.
J Mol Graph. 1996 Feb;14(1):12-8. doi: 10.1016/0263-7855(95)00087-9.
Ab initio quantum chemical calculations of molecular properties such as, e.g., torsional potential energies, require massive computational effort even for moderately sized molecules, if basis sets with a reasonable quality are employed. Using ab initio data on conformational properties of the cofactor (6R,1'R,2'S)-5,6,7,8-tetrahydrobiopterin, we demonstrate that error backpropagation networks can be established that efficiently approximate complicated functional relationships such as torsional potential energy surfaces of a flexible molecule. Our pilot simulations suggest that properly trained neural networks might provide an extremely compact storage medium for quantum chemically obtained information. Moreover, they are outstandingly comfortable tools when it comes to making use of the stored information. One possible application is demonstrated, namely, computation of relaxed torsional energy surfaces.
即便对于中等大小的分子,如果使用具有合理质量的基组,从头算量子化学计算分子性质(例如扭转势能)也需要大量的计算工作。利用辅因子(6R,1'R,2'S)-5,6,7,8-四氢生物蝶呤构象性质的从头算数据,我们证明可以建立误差反向传播网络,其能有效地近似复杂的函数关系,比如柔性分子的扭转势能面。我们的初步模拟表明,经过适当训练的神经网络可能为量子化学获得的信息提供极其紧凑的存储介质。此外,在利用存储的信息时,它们是非常便捷的工具。展示了一个可能的应用,即计算松弛扭转能面。