Kiser G L, Weinert T A
Molecular and Cellular Biology Department, University of Arizona, Tucson 85721, USA.
Mol Biol Cell. 1996 May;7(5):703-18. doi: 10.1091/mbc.7.5.703.
In eukaryotic cells, checkpoint genes cause arrest of cell division when DNA is damaged or when DNA replication is blocked. In this study of budding yeast checkpoint genes, we identify and characterize another role for these checkpoint genes after DNA damage-transcriptional induction of genes. We found that three checkpoint genes (of six genes tested) have strong and distinct roles in transcriptional induction in four distinct pathways of regulation (each defined by induction of specific genes). MEC1 mediates the response in three transcriptional pathways, RAD53 mediates two of these pathways, and RAD17 mediates but a single pathway. The three other checkpoint genes (including RAD9) have small (twofold) but significant roles in transcriptional induction in all pathways. One of the pathways that we identify here leads to induction of MEC1 and RAD53 checkpoint genes themselves. This suggests a positive feedback circuit that may increase the cell's ability to respond to DNA damage. We make two primary conclusions from these studies. First, MEC1 appears to be the key regulator because it is required for all responses (both transcriptional and cell cycle arrest), while other genes serve only a subset of these responses. Second, the two types of responses, transcriptional induction and cell cycle arrest, appear distinct because both require MEC1 yet only cell cycle arrest requires RAD9. These and other results were used to formulate a working model of checkpoint gene function that accounts for roles of different checkpoint genes in different responses and after different types of damage. The conclusion that the yeast MEC1 gene is a key regulator also has implications for the role of a putative human homologue, the ATM gene.
在真核细胞中,当DNA受损或DNA复制受阻时,检查点基因会导致细胞分裂停滞。在这项对芽殖酵母检查点基因的研究中,我们鉴定并描述了这些检查点基因在DNA损伤后基因转录诱导方面的另一个作用。我们发现,(在测试的六个基因中)有三个检查点基因在四种不同的调控途径(每种途径由特定基因的诱导来定义)的转录诱导中具有强大且独特的作用。MEC1介导三种转录途径中的反应,RAD53介导其中两种途径,而RAD17仅介导一种途径。其他三个检查点基因(包括RAD9)在所有途径的转录诱导中具有较小(两倍)但显著的作用。我们在此鉴定出的其中一种途径会导致MEC1和RAD53检查点基因自身的诱导。这表明存在一个正反馈回路,可能会增强细胞对DNA损伤的反应能力。我们从这些研究中得出两个主要结论。首先,MEC1似乎是关键调节因子,因为所有反应(转录和细胞周期停滞)都需要它,而其他基因仅参与这些反应的一部分。其次,转录诱导和细胞周期停滞这两种反应似乎是不同的,因为两者都需要MEC1,但只有细胞周期停滞需要RAD9。这些结果及其他结果被用于构建一个检查点基因功能的工作模型,该模型解释了不同检查点基因在不同反应以及不同类型损伤后的作用。酵母MEC1基因是关键调节因子这一结论也对假定的人类同源物ATM基因的作用具有启示意义。