Marrow P, McNamara J M, Houston A I, Stevenson I R, Clutton-Brock T H
Department of Zoology, University of Cambridge, U.K.
Philos Trans R Soc Lond B Biol Sci. 1996 Jan 29;351(1335):17-32. doi: 10.1098/rstb.1996.0002.
Adaptive decisions concerning the scheduling of reproduction in an animal's lifetime, including age at maturity and clutch or litter size, should depend on an animal's body condition or state. In this state-dependent case, we are concerned with the optimization of sequences of actions and so dynamic optimization techniques are appropriate. Here we show how stochastic dynamic programming can be used to study the reproductive strategies and population dynamics of natural populations, assuming optimal decisions. As examples we describe models based upon field data from an island population of Soay sheep on St. Kilda. This population shows persistent instability, with cycles culminating in high mortality every three or four years. We explore different assumptions about the extent to which Soay ewes use information about the population cycle in making adaptive decisions. We compare the observed distributions of strategies and population dynamics with model predictions; the results indicate that Soay ewes make optimal reproductive decisions given that they have no information about the population cycle. This study represents the first use of a dynamic optimization life history model of realistic complexity in the study of a field population. The techniques we use are potentially applicable to many other populations, and we discuss their extension to other species and other life history questions.
动物一生中关于繁殖时间安排的适应性决策,包括成熟年龄、一窝卵或一窝幼崽的数量,应该取决于动物的身体状况或状态。在这种依赖状态的情况下,我们关注的是行动序列的优化,因此动态优化技术是合适的。在这里,我们展示了如何使用随机动态规划来研究自然种群的繁殖策略和种群动态,假设决策是最优的。作为例子,我们描述了基于来自圣基尔达岛索艾羊种群实地数据的模型。这个种群表现出持续的不稳定性,每三到四年会出现一次以高死亡率告终的周期。我们探讨了关于索艾母羊在做出适应性决策时利用种群周期信息程度的不同假设。我们将观察到的策略分布和种群动态与模型预测进行比较;结果表明,鉴于索艾母羊没有关于种群周期的信息,它们做出了最优的繁殖决策。这项研究代表了在野外种群研究中首次使用具有现实复杂性的动态优化生活史模型。我们使用的技术可能适用于许多其他种群,并且我们讨论了将其扩展到其他物种和其他生活史问题的情况。