Suppr超能文献

线粒体中允许氧化还原循环半醌与分子氧建立直接氧化还原对的条件。

Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen.

作者信息

Nohl H, Gille L, Schönheit K, Liu Y

机构信息

Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria.

出版信息

Free Radic Biol Med. 1996;20(2):207-13. doi: 10.1016/0891-5849(95)02038-1.

Abstract

The present investigation seeks to elucidate the molecular mechanism responsible of the transformation of redox-cycling ubiquinone (UQ) from a save electron carrier to an O2.- generator as observed in toluene-treated mitochondria as well as in mitochondria exposed to conditions of organ ischemia/reperfusion. Starting from the earlier finding that for thermodynamic grounds autoxidation of ubisemiquinone (SQ.-) requires the accessibility of protons, two possibilities were considered: a) protons from the aqueous phase may penetrate into the phospholipid bilayer and react with SQ.- due to a decreased hydrophobicity of the membrane, b) the physical state of the membrane remains unchanged while the binding of redox-cycling UQ is changed such that SQ.- will come into contact with the aqueous phase in the polar head group section. Spin probes were used to follow changes of the physical order of phospholipids of the inner mitochondrial membrane. Binding changes of mitochondrial SQ.- were assessed from power saturation experiments and spin-spin interactions with a Cr3+ salt of the aqueous phase were studied to recognize orientation changes via the polar head group section of the membrane. Our results show that autoxidation of SQ.- occurs in two different ways. In the case of membrane insertion of toluene, the physical property of the membrane was affected such that protons could penetrate and allow SQ.- to undergo autoxidation. In contrast, mitochondrial respiration of cytosolic NADH accumulating during ischemia involves a low saturating SQ.- species that readily autoxidizes due to its spatial orientation close to the aqueous face of the membrane. We conclude from these observations that in line with thermodynamics autoxidation of SQ.- in mitochondria requires protons that normally have no access.

摘要

本研究旨在阐明在甲苯处理的线粒体以及暴露于器官缺血/再灌注条件下的线粒体中,氧化还原循环泛醌(UQ)从安全电子载体转变为超氧阴离子(O2.-)生成剂的分子机制。基于早期发现,即从热力学角度来看,半醌自由基(SQ.-)的自氧化需要质子的可及性,考虑了两种可能性:a)由于膜疏水性降低,水相中的质子可能穿透磷脂双层并与SQ.-反应;b)膜的物理状态保持不变,而氧化还原循环UQ的结合发生变化,使得SQ.-在极性头部区域与水相接触。使用自旋探针跟踪线粒体内膜磷脂物理有序性的变化。通过功率饱和实验评估线粒体SQ.-的结合变化,并研究与水相Cr3+盐的自旋-自旋相互作用,以识别通过膜极性头部区域的取向变化。我们的结果表明,SQ.-的自氧化以两种不同方式发生。在甲苯插入膜的情况下,膜的物理性质受到影响,使得质子能够穿透并使SQ.-发生自氧化。相反,缺血期间积累的胞质NADH的线粒体呼吸涉及一种低饱和度的SQ.-物种,由于其空间取向靠近膜的水相表面,很容易自氧化。我们从这些观察结果得出结论,与热力学一致,线粒体中SQ.-的自氧化需要通常无法获得的质子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验