Aw S T, Halmagyi G M, Pohl D V, Curthoys I S, Yavor R A, Todd M J
Neuro-otology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
Acta Otolaryngol Suppl. 1995;520 Pt 2:260-2. doi: 10.3109/00016489509125243.
The responses to rapid, passive, unpredictable, low amplitude (10-20 degrees), high acceleration (3,000-4,000 degrees/s2) head rotations were used to study the human vestibulo-ocular reflex (VOR) in pitch and yaw plane after unilateral posterior semicircular canal occlusion (uPCO) in 10 subjects. The results from these 10 uPCO subjects were compared with those from 18 normal subjects. The VOR gains at a head velocity of 200 degrees/s in the uPCO subjects were: pitch upward = 0.62 +/- 0.06, pitch downward = 0.87 +/- 0.11, yew ipsilesion = 0.78 +/- 0.06, yaw contralesion = 0.79 +/- 0.10 and in normal subjects were: pitch upward = 0.92 +/- 0.06, pitch downward = 0.96 +/- 0.04, yaw right = 0.88 +/- 0.05, yaw left = 0.91 +/- 0.12 (group means +/- twotailed 95% confidence intervals). The results showed that the pitch-vVOR gain was significantly (p < 0.05) decreased in response to upward head impulses whereas in response to downward, ipsilesion and contralesion head impulses were not significantly different (p > 0.05) from the normals. This study shows that there is 30% permanent residual deficit of the upward pitch-vVOR with an up-down asymmetry in pitch-vVOR gain following inactivation of a single posterior semicircular canal and that compensation of pitch-vVOR function is incomplete.