Suppr超能文献

Increased expression of synapsin I mRNA in defined areas of the rat central nervous system following chronic morphine treatment.

作者信息

Matus-Leibovitch N, Ezra-Macabee V, Saya D, Attali B, Avidor-Reiss T, Barg J, Vogel Z

机构信息

Department of Neurobiology, Weizmann Institute of Science, Israel.

出版信息

Brain Res Mol Brain Res. 1995 Dec 28;34(2):221-30. doi: 10.1016/0169-328x(95)00166-p.

Abstract

Chronic opiate administration leads to a selective regulation of several cellular proteins and mRNAs. This phenomenon has been viewed as a compensatory mechanism to the opiate signaling leading to the development of opiate addiction. In this study, in situ hybridization histochemistry experiments were employed to investigate the effect of chronic morphine treatment on synapsin I gene expression. We show here for the first time that prolonged morphine exposure causes a selective increase in the mRNA levels of synapsin I in several brain regions which are considered to be important for opiate action. Quantitative analysis of the signals, obtained by hybridization of digoxigenin-labeled antisense RNA probe, revealed a 5.8- and 7-fold increase of synapsin I mRNA levels in the locus coeruleus and the amygdala of morphine-treated rats, respectively, as compared with control untreated rats. Increased expression of synapsin I mRNA was also observed in the spinal cord of morphine-treated rats (by 3.8-fold). Since opiates were shown to attenuate neurotransmitter release and reduce synapsin I phosphorylation, it is suggested that the increase in synapsin I levels would lead to the requirement of higher amounts of opiate agonists to obtain the opiate physiological effects. These results suggest that the increases in mRNA levels of synapsin I in these specific areas can be part of the molecular mechanism(s) underlying opiate tolerance and withdrawal.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验