Suppr超能文献

关于《G蛋白和环磷酸腺苷系统中的适应性变化在介导吗啡和可卡因对神经元功能的慢性作用中的一般作用》的思考

Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function".

作者信息

Nestler Eric J

机构信息

Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA.

出版信息

Brain Res. 2016 Aug 15;1645:71-4. doi: 10.1016/j.brainres.2015.12.039. Epub 2015 Dec 29.

Abstract

UNLABELLED

In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction.

ORIGINAL ARTICLE ABSTRACT

"A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP-dependent protein kinase, and certain phosphoproteins in the rat locus coeruleus, but not in several other brain regions studied, and that chronic morphine decreases levels of Giα and increases levels of adenylate cyclase in dorsal root ganglion/spinal cord (DRG-SC) co-cultures. These findings led us to survey the effects of chronic morphine on the G-protein/cyclic AMP system in a large number of brain regions to determine how widespread such regulation might be. We found that while most regions showed no regulation in response to chronic morphine, nucleus accumbens (NAc) and amygdala did show increases in adenylate cyclase and cyclic AMP-dependent protein kinase activity, and thalamus showed an increase in cyclic AMP-dependent protein kinase activity only. An increase in cyclic AMP-dependent protein kinase activity was also observed in DRG-SC co-cultures. Morphine regulation of G-proteins was variable, with decreased levels of Giα seen in the NAc, increased levels of Giα and Goα amygdala, and no change in thalamus or the other brain regions studied. Interestingly, chronic treatment of rats with cocaine, but not with several non-abused drugs, produced similar changes compared to morphine in G-proteins, adenylate cyclase, and cyclic AMP-dependent protein kinase in the NAc, but not in the other brain regions studied. These results indicate that regulation of the G-protein/cyclic AMP system represents a mechanism by which a number of opiate-sensitive neurons adapt to chronic morphine and thereby develop aspects of opiate tolerance and/or dependence. The findings that chronic morphine and cocaine produce similar adaptations in the NAc, a brain region important for the reinforcing actions of many types of abused substances, suggest further that common mechanisms may underlie psychological aspects of drug addiction mediated by this brain region. © 1991. This article is part of a Special Issue entitled SI:50th Anniversary Issue.

摘要

未标注

1991年我们证明,从粗提物中的酶活性测量结果推断,慢性吗啡暴露会增加大鼠中枢神经系统多个区域的腺苷酸环化酶和蛋白激酶A(PKA)水平(特威利格等人,1991年)。这些发现使我们推测,cAMP途径的协同上调是阿片耐受和依赖的一般机制。此外,在同一研究中,我们发现,慢性给予可卡因后,伏隔核(NAc)中腺苷酸环化酶和PKA活性有类似诱导,但几种未被滥用的精神活性药物则没有。吗啡和可卡因还在该脑区诱导了抑制性G蛋白亚基的等效变化。因此,我们扩展了我们的假设,提出特别是在诸如NAc等脑奖赏区域内,cAMP途径上调代表了几类滥用药物共有的奖赏耐受和依赖的共同机制。自那时以来,许多实验室的研究为这些假设提供了大量支持。具体而言,包括NAc在内的几个中枢神经系统区域中的阿片类药物,以及更具选择性的NAc中的可卡因,通过转录因子CREB诱导某些腺苷酸环化酶同工型和PKA亚基的表达,这些转录适应性发挥稳态功能以对抗药物作用。在某些脑区,如蓝斑,这些适应性介导了身体阿片依赖和戒断的各个方面,而在NAc中,它们介导了驱动药物自我给药增加的奖赏耐受和依赖。这项工作对理解成瘾的分子基础具有重要意义。

原始文章摘要

“G蛋白和环磷酸腺苷系统的适应性在介导吗啡和可卡因对神经元功能的慢性作用中的一般作用”。先前的研究表明,慢性吗啡会增加大鼠蓝斑中G蛋白亚基Giα和Goα、腺苷酸环化酶、环磷酸腺苷依赖性蛋白激酶以及某些磷蛋白的水平,但在其他几个研究的脑区中则不会,并且慢性吗啡会降低背根神经节/脊髓(DRG-SC)共培养物中Giα的水平并增加腺苷酸环化酶的水平。这些发现促使我们研究慢性吗啡对大量脑区中G蛋白/环磷酸腺苷系统的影响,以确定这种调节可能有多广泛。我们发现,虽然大多数区域对慢性吗啡没有调节反应,但伏隔核(NAc)和杏仁核确实显示出腺苷酸环化酶和环磷酸腺苷依赖性蛋白激酶活性增加,而丘脑仅显示环磷酸腺苷依赖性蛋白激酶活性增加。在DRG-SC共培养物中也观察到环磷酸腺苷依赖性蛋白激酶活性增加。吗啡对G蛋白的调节是可变的,在NAc中观察到Giα水平降低,在杏仁核中Giα和Goα水平增加,而丘脑或其他研究的脑区没有变化。有趣的是,与吗啡相比,慢性给予大鼠可卡因(但不是几种未被滥用的药物)在NAc中产生了与吗啡类似的G蛋白、腺苷酸环化酶和环磷酸腺苷依赖性蛋白激酶变化,但在其他研究的脑区中没有。这些结果表明,G蛋白/环磷酸腺苷系统的调节代表了许多对阿片敏感的神经元适应慢性吗啡并由此发展出阿片耐受和/或依赖方面的一种机制。慢性吗啡和可卡因在NAc(一个对许多类型滥用物质的强化作用很重要的脑区)中产生类似适应性的发现进一步表明,共同机制可能是由该脑区介导的药物成瘾心理方面的基础。©1991年。本文是名为SI:50周年特刊的特刊一部分。

相似文献

引用本文的文献

本文引用的文献

4
Dynorphin, stress, and depression.脑啡肽、应激和抑郁。
Brain Res. 2010 Feb 16;1314:56-73. doi: 10.1016/j.brainres.2009.09.074. Epub 2009 Sep 24.
9
CREB modulates excitability of nucleus accumbens neurons.CREB调节伏隔核神经元的兴奋性。
Nat Neurosci. 2006 Apr;9(4):475-7. doi: 10.1038/nn1661. Epub 2006 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验