Castedo M, Hirsch T, Susin S A, Zamzami N, Marchetti P, Macho A, Kroemer G
National Center for Scientific Research-UPR420, Villejuif, France.
J Immunol. 1996 Jul 15;157(2):512-21.
When cells undergo nuclear apoptosis (chromatin condensation, DNA fragmentation), they already manifest at least three alterations that can be quantified cytofluorometrically at the single-cell level: 1) a loss of mitochondrial transmembrane potential (delta psi m), 2) an increased production of superoxide anions, and 3) the aberrant exposure of phosphatidylserine (PS) residues on the outer plasma membrane leaflet. This latter alteration allows for the phagocytic recognition/elimination of apoptotic cells. In this work, we show that cells first undergo the delta psi m disruption and that PS exposure only affects cells that already have a low delta psi m. Pharmacologic modulation of apoptosis with inhibitors of macromolecule synthesis or proteases, as well as with drugs stabilizing the delta psi m, indicates that delta psi m disruption and PS exposure are coregulated. Interventions on apoptosis-regulatory genes (p53, bcl-2) confirm the coregulation of delta-psi-m disruption, PS exposure, and nuclear signs of apoptosis. In all conditions in which apoptosis is prevented, the delta psi m remains stable and PS cannot be detected on the cell surface. Reactive oxygen species do not contribute to PS exposure, based on two lines of evidence. First, among thymocytes undergoing apoptosis in response to dexamethasone, delta psi mlow cells first expose PS and then hyperproduce superoxide anion. Second, exogenous sources of reactive oxygen species or the superoxide anion-generating drug menadione fail to cause rapid PS exposure. Instead, direct interventions on mitochondria using inhibitors of the respiratory chain or the F1 ATP synthase cause PS exposure in cells subsequent to delta psi m disruption. This effect is also obtained in anucleate cells, indicating that the nucleus does not intervene in the sequence of events coupling mitochondrial dysfunction to PS exposure. Altogether, these data underline the functional impact of mitochondrial alterations on the apoptotic process.
当细胞发生核凋亡(染色质浓缩、DNA片段化)时,它们至少已表现出三种可在单细胞水平通过细胞荧光测定法定量的改变:1)线粒体跨膜电位(Δψm)丧失;2)超氧阴离子生成增加;3)磷脂酰丝氨酸(PS)残基在外质膜小叶上异常暴露。后一种改变使得凋亡细胞能够被吞噬识别/清除。在本研究中,我们发现细胞首先发生Δψm破坏,而PS暴露仅影响那些已经具有低Δψm的细胞。用大分子合成抑制剂或蛋白酶以及稳定Δψm的药物对凋亡进行药理学调节,表明Δψm破坏和PS暴露是共同调节的。对凋亡调节基因(p53、bcl - 2)的干预证实了Δψm破坏、PS暴露和凋亡核标志的共同调节。在所有阻止凋亡的条件下,Δψm保持稳定,且在细胞表面检测不到PS。基于两条证据,活性氧物种不参与PS暴露。首先,在对地塞米松产生凋亡反应的胸腺细胞中,Δψmlow细胞首先暴露PS,然后超产生超氧阴离子。其次,活性氧物种的外源来源或超氧阴离子生成药物甲萘醌未能导致快速的PS暴露。相反,使用呼吸链抑制剂或F1 ATP合酶对线粒体进行直接干预,会在Δψm破坏后导致细胞中PS暴露。这种效应在无核细胞中也能获得,表明细胞核不参与将线粒体功能障碍与PS暴露联系起来的事件序列。总之,这些数据强调了线粒体改变对凋亡过程的功能影响。