Keller B B, MacLennan M J, Tinney J P, Yoshigi M
NIH SCOR in Pediatric Cardiovascular Diseases, University of Rochester School of Medicine, NY 14642, USA.
Circ Res. 1996 Aug;79(2):247-55. doi: 10.1161/01.res.79.2.247.
Embryonic cardiovascular function has been extensively studied in vivo in the chick embryo. However, the geometry of mammalian and avian hearts differs; the mammalian cardiovascular system is coupled to both yolk sac and placental circulations, and unique murine genetic models associated with structural and functional cardiovascular defects are now available. We therefore adapted techniques validated for the chick embryo to define cardiovascular dimensions and function in the mouse embryo. We bred C3HeB female and C57B1/J6 male mice and ICR pairs for experiments on embryonic days (EDs) 10.5 to 14.5 (n = 130 dams). After maternal anesthesia (pentobarbital, 60 mg/kg IP), laparotomy, and sequential regional hysterotomy, we exposed and then imaged individual embryos at 60 Hz (video) in the ventral and/or left anterior oblique views while maintaining uteroplacental continuity. We measured epicardial chamber dimensions and then calculated right and left ventricular elliptical volumes from ares. In addition, we measured pulsed-Doppler blood velocity across the atrioventricular cushions and ventricular outflow tract. We maintained embryonic temperature with a heated surgical platform, topical oxygenated and warmed buffer, and warming lamps. Embryonic heart rate increased from 124.7 +/- 5.2 to 194.3 +/- 13.2 bpm from EDs 10.5 to 14.5 (P < .01). Right and left ventricular end-diastolic and end-systolic dimensions increased (P < .05 by ANOVA for each). Maximal ventricular mean inflow and outflow velocities increased from 62.33 +/- 4.06 to 106.23 +/- 11.59 and from 55.79 +/- 6.11 to 91.61 +/- 6.93 mm/s, respectively (P < .05 by ANOVA for each). Thus, as has been done for chick and rat embryos, the maturation of murine embryonic cardiovascular function can be quantified in vivo, setting the stage for the investigation of structure-function relations in mouse models of cardiovascular development and disease.
胚胎心血管功能已在鸡胚体内得到广泛研究。然而,哺乳动物和鸟类心脏的几何结构不同;哺乳动物的心血管系统与卵黄囊和胎盘循环均相连,并且现在已有与心血管结构和功能缺陷相关的独特小鼠遗传模型。因此,我们采用了已在鸡胚中验证的技术来确定小鼠胚胎的心血管尺寸和功能。我们培育了C3HeB雌性和C57B1/J6雄性小鼠以及ICR配对小鼠,用于胚胎期(EDs)10.5至14.5天的实验(n = 130只母鼠)。在对母鼠进行麻醉(戊巴比妥,60 mg/kg腹腔注射)、剖腹术和顺序性局部子宫切开术后,我们暴露单个胚胎,然后在保持子宫胎盘连续性的同时,以60 Hz(视频)从腹侧和/或左前斜位对其进行成像。我们测量了心外膜腔室尺寸,然后根据面积计算右心室和左心室的椭圆体积。此外,我们测量了穿过房室垫和心室流出道的脉冲多普勒血流速度。我们通过加热的手术平台、局部充氧和加温的缓冲液以及加温灯来维持胚胎温度。胚胎心率从胚胎期10.5天的124.7±5.2次/分钟增加到14.5天的194.3±13.2次/分钟(P <.01)。右心室和左心室的舒张末期和收缩末期尺寸均增加(每项经方差分析P <.05)。心室最大平均流入和流出速度分别从62.33±4.06增加到106.23±11.59以及从55.79±6.11增加到91.61±6.93 mm/s(每项经方差分析P <.05)。因此,如同对鸡胚和大鼠胚胎所做的那样,小鼠胚胎心血管功能的成熟可以在体内进行量化,为研究心血管发育和疾病小鼠模型中的结构-功能关系奠定了基础。