Pachter R, Fairchild S B, Lupo J A, Adams W W
Wright Laboratory, Wright-Patterson Air Force Base OH 45433, USA.
Biopolymers. 1996 Sep;39(3):377-86. doi: 10.1002/(SICI)1097-0282(199609)39:3%3C377::AID-BIP9%3E3.0.CO;2-L.
We report the application of an integrated computational approach for biomolecular structure determination at a low resolution. In particular, a neural network is trained to predict the spatial proximity of C-alpha atoms that are less than a given threshold apart, whereas a Kalman filter algorithm is employed to outline the biomolecular fold, with a constraints set that includes these pairwise atomic distances, and the distances and angles that define the structure as it is known from the protein's sequence. The results for Crambin demonstrate that this integrated approach is useful for molecular structure prediction at a low resolution and may also complement existing experimental distance data for a protein structure determination.
我们报告了一种用于低分辨率生物分子结构测定的综合计算方法的应用。具体而言,训练一个神经网络来预测相距小于给定阈值的C-α原子的空间接近度,同时采用卡尔曼滤波算法勾勒生物分子折叠,其约束集包括这些成对的原子距离,以及根据蛋白质序列已知的定义结构的距离和角度。胰凝乳蛋白酶原的结果表明,这种综合方法对于低分辨率的分子结构预测是有用的,并且还可以补充用于蛋白质结构测定的现有实验距离数据。