Suppr超能文献

使用神经网络和双重迭代卡尔曼滤波技术进行低分辨率生物分子结构预测。

Biomolecular structure prediction at a low resolution using a neural network and the double-iterated Kalman filter technique.

作者信息

Pachter R, Fairchild S B, Lupo J A, Adams W W

机构信息

Wright Laboratory, Wright-Patterson Air Force Base OH 45433, USA.

出版信息

Biopolymers. 1996 Sep;39(3):377-86. doi: 10.1002/(SICI)1097-0282(199609)39:3%3C377::AID-BIP9%3E3.0.CO;2-L.

Abstract

We report the application of an integrated computational approach for biomolecular structure determination at a low resolution. In particular, a neural network is trained to predict the spatial proximity of C-alpha atoms that are less than a given threshold apart, whereas a Kalman filter algorithm is employed to outline the biomolecular fold, with a constraints set that includes these pairwise atomic distances, and the distances and angles that define the structure as it is known from the protein's sequence. The results for Crambin demonstrate that this integrated approach is useful for molecular structure prediction at a low resolution and may also complement existing experimental distance data for a protein structure determination.

摘要

我们报告了一种用于低分辨率生物分子结构测定的综合计算方法的应用。具体而言,训练一个神经网络来预测相距小于给定阈值的C-α原子的空间接近度,同时采用卡尔曼滤波算法勾勒生物分子折叠,其约束集包括这些成对的原子距离,以及根据蛋白质序列已知的定义结构的距离和角度。胰凝乳蛋白酶原的结果表明,这种综合方法对于低分辨率的分子结构预测是有用的,并且还可以补充用于蛋白质结构测定的现有实验距离数据。

相似文献

7
Predicting protein secondary structure content. A tandem neural network approach.
J Mol Biol. 1992 Jun 5;225(3):713-27. doi: 10.1016/0022-2836(92)90396-2.
10
Constraining volume by matching the moments of a distance distribution.通过匹配距离分布的矩来约束体积。
Comput Appl Biosci. 1996 Aug;12(4):319-26. doi: 10.1093/bioinformatics/12.4.319.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验