Suppr超能文献

一种通过神经网络预测蛋白质主链三维结构的新方法。

A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks.

作者信息

Bohr H, Bohr J, Brunak S, Cotterill R M, Fredholm H, Lautrup B, Petersen S B

机构信息

Risø National Laboratory, Roskilde.

出版信息

FEBS Lett. 1990 Feb 12;261(1):43-6. doi: 10.1016/0014-5793(90)80632-s.

Abstract

Three-dimensional structures of protein backbones have been predicted using neural networks. A feed forward neural network was trained on a class of functionally, but not structurally, homologous proteins, using backpropagation learning. The network generated tertiary structure information in the form of binary distance constraints for the C(alpha) atoms in the protein backbone. The binary distance between two C(alpha) atoms was 0 if the distance between them was less than a certain threshold distance, and 1 otherwise. The distance constraints predicted by the trained neural network were utilized to generate a folded conformation of the protein backbone, using a steepest descent minimization approach.

摘要

已使用神经网络预测了蛋白质主链的三维结构。使用反向传播学习算法,在一类功能上但非结构上同源的蛋白质上训练了一个前馈神经网络。该网络以蛋白质主链中Cα原子的二元距离约束形式生成三级结构信息。如果两个Cα原子之间的距离小于某个阈值距离,则它们之间的二元距离为0,否则为1。使用最速下降最小化方法,将训练好的神经网络预测的距离约束用于生成蛋白质主链的折叠构象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验