Suppr超能文献

霍乱弧菌O1型埃尔托溶血素造成膜损伤的机制

Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.

作者信息

Ikigai H, Akatsuka A, Tsujiyama H, Nakae T, Shimamura T

机构信息

Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.

出版信息

Infect Immun. 1996 Aug;64(8):2968-73. doi: 10.1128/iai.64.8.2968-2973.1996.

Abstract

El Tor hemolysin (ETH; molecular mass, 65 kDa) derived from Vibrio cholerae O1 spontaneously assembled oligomeric aggregates on the membranes of rabbit erythrocyte ghosts and liposomes. Membrane-associated oligomers were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting into two to nine bands with apparent molecular masses of 170 to 350 kDa. ETH assembled oligomers on a liposomal membrane consisting of phosphatidylcholine and cholesterol, but not on a membrane of phosphatidylcholine alone. Cholesterol could be replaced with diosgenin or ergosterol but not with 5alpha-cholestane-3-one, suggesting that sterol is essential for the oligomerization. The treatment of carboxyfluorescein-encapsulated liposomes with ETH caused a rapid release of carboxyfluorescein into the medium. Because dextrin 20 (molecular mass, 900 Da) osmotically protected ETH-mediated hemolysis, this hemolysis is likely to be caused by pore formation on the membrane. The pore size(s) estimated from osmotic protection assays was in the range of 1.2 to 1.6 nm. The pore formed on a rabbit erythrocyte membrane was confirmed morphologically by electron microscopy. Thus, we provide evidence that ETH damages the target by the assembly of hemolysin oligomers and pore formation on the membrane.

摘要

源自霍乱弧菌O1的埃尔托溶血素(ETH;分子量65 kDa)在兔红细胞血影和脂质体膜上自发组装成寡聚聚集体。膜相关寡聚体通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳和免疫印迹法分离为两到九条带,表观分子量为170至350 kDa。ETH在由磷脂酰胆碱和胆固醇组成的脂质体膜上组装寡聚体,但不在仅由磷脂酰胆碱组成的膜上组装。胆固醇可以被薯蓣皂苷元或麦角固醇取代,但不能被5α-胆甾烷-3-酮取代,这表明固醇对于寡聚化至关重要。用ETH处理羧基荧光素包封的脂质体导致羧基荧光素迅速释放到培养基中。由于糊精20(分子量900 Da)对ETH介导的溶血具有渗透保护作用,这种溶血可能是由膜上形成孔道引起的。通过渗透保护试验估计的孔径范围为1.2至1.6 nm。通过电子显微镜从形态学上证实了在兔红细胞膜上形成的孔道。因此,我们提供了证据表明ETH通过溶血素寡聚体的组装和膜上孔道的形成来损伤靶标。

相似文献

1
Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.
Infect Immun. 1996 Aug;64(8):2968-73. doi: 10.1128/iai.64.8.2968-2973.1996.
5
Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin.
Med Microbiol Immunol. 1995 May;184(1):37-44. doi: 10.1007/BF00216788.
6
Identity of hemolysins produced by Vibrio cholerae non-O1 and V. cholerae O1, biotype El Tor.
Infect Immun. 1986 Mar;51(3):927-31. doi: 10.1128/iai.51.3.927-931.1986.
7
Purification and characterization of a pore-forming protein from the marine sponge Tethya lyncurium.
Eur J Biochem. 1992 Dec 1;210(2):499-507. doi: 10.1111/j.1432-1033.1992.tb17448.x.
8
Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein.
Biochim Biophys Acta. 1999 Jan 8;1415(2):297-305. doi: 10.1016/s0005-2736(98)00183-7.

引用本文的文献

1
Biofilm formation on human immune cells is a multicellular predation strategy of Vibrio cholerae.
Cell. 2023 Jun 8;186(12):2690-2704.e20. doi: 10.1016/j.cell.2023.05.008.
2
El Tor Biotype Activates the Caspase-11-Independent Canonical Nlrp3 and Pyrin Inflammasomes.
Front Immunol. 2019 Oct 29;10:2463. doi: 10.3389/fimmu.2019.02463. eCollection 2019.
3
Exploring the Genomic Traits of Non-toxigenic Strains Isolated in Southern Chile.
Front Microbiol. 2018 Feb 8;9:161. doi: 10.3389/fmicb.2018.00161. eCollection 2018.
4
Effect of Dietary Minerals on Virulence Attributes of .
Front Microbiol. 2017 May 19;8:911. doi: 10.3389/fmicb.2017.00911. eCollection 2017.
5
Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin.
Toxins (Basel). 2015 Aug 21;7(8):3344-58. doi: 10.3390/toxins7083344.
6
Role of pore-forming toxins in bacterial infectious diseases.
Microbiol Mol Biol Rev. 2013 Jun;77(2):173-207. doi: 10.1128/MMBR.00052-12.
7
Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity.
J Mol Biol. 2013 Mar 11;425(5):944-57. doi: 10.1016/j.jmb.2012.12.016. Epub 2012 Dec 28.
9
Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans.
PLoS One. 2012;7(5):e38200. doi: 10.1371/journal.pone.0038200. Epub 2012 May 31.
10
Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7385-90. doi: 10.1073/pnas.1017442108. Epub 2011 Apr 18.

本文引用的文献

1
The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.
Arch Biochem Biophys. 1963 Jan;100:119-30. doi: 10.1016/0003-9861(63)90042-0.
2
A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane.
J Bacteriol. 1993 Sep;175(18):5953-61. doi: 10.1128/jb.175.18.5953-5961.1993.
4
Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii.
Eur J Biochem. 1994 Mar 1;220(2):339-47. doi: 10.1111/j.1432-1033.1994.tb18630.x.
6
On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin.
J Cell Biol. 1981 Oct;91(1):83-94. doi: 10.1083/jcb.91.1.83.
7
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.
8
Molecular sieving by the Bacillus megaterium cell wall and protoplast.
J Bacteriol. 1971 Sep;107(3):718-35. doi: 10.1128/jb.107.3.718-735.1971.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验