Suppr超能文献

铜绿假单胞菌脂肪酶在人炎症效应细胞(血小板、粒细胞和单核细胞)释放炎症介质中的作用

Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes.

作者信息

König B, Jaeger K E, Sage A E, Vasil M L, König W

机构信息

Medizinische Mikrobiologie und Immunologie, AG Infektabwehrmechanismen, Ruhr-Universität Bochum, Germany.

出版信息

Infect Immun. 1996 Aug;64(8):3252-8. doi: 10.1128/iai.64.8.3252-3258.1996.

Abstract

Previously, we have shown that Pseudomonas aeruginosa lipase and phospholipase C (PLC), two extracellular lipolytic enzymes, interact with each other during 12-hydroxyeicosatetraenoic acid (HETE) generation from human platelets. In this regard. the addition of purified P. aeruginosa lipase to PLC-containing crude P. aeruginosa culture supernatants enhances the generation of the chemotactically active 12-HETE from human platelets. Therefore, we analyzed the interaction of purified P. aeruginosa lipase and purified hemolytic P. aeruginosa PLC with regard to inflammatory mediator release from human platelets, neutrophilic and basophilic granulocytes, and monocytes. Purified P. aeruginosa PLC, but not purified lipase by itself, induced 12-HETE generation from human platelets, the generation of leukotriene B4 (LTB4) and oxygen metabolites, enzyme release from human neutrophils, and histamine release from basophils but diminished interleukin-8 (IL-8) release from human monocytes in a dose-dependent manner. The addition of purified lipase enhanced PLC-induced 12-HETE and LTB4 generation, did not influence enzyme, histamine, or IL-8 release, but diminished the PLC-induced chemiluminescent response. Similar results were obtained when the hemolytic PLC from Clostridium perfringens was used instead of P. aeruginosa PLC. For further comparison, we used the well-defined calcium ionophore A23187 and phorbol-12-myristate-13-acetate (PMA) as stimuli. Lipase enhanced calcium ionophore-induced LTB4 generation and beta-glucuronidase release but reduced calcium ionophore-induced and PMA-induced chemiluminescence. In parallel, we analyzed the role of lipase in a crude P. aeruginosa culture supernatant containing PLC and lipase. Lipase activity in the P. aeruginosa culture supernatant was inhibited by treatment with the lipase-specific inhibitor hexadecylsulfonyl fluoride, leaving the activity of PLC unaffected. The capacity of "lipase-inactivated culture supernatant" to induce 12-HETE and LTB4 generation was diminished by 50 to 100%. Our results suggest that the simultaneous secretion of lipase and PLC by P. aeruginosa residing in an infected host may result in severe pathological effects which cannot be explained by the sole action of the individual virulence factor on inflammatory effector cells.

摘要

此前,我们已经表明,铜绿假单胞菌脂肪酶和磷脂酶C(PLC)这两种细胞外脂解酶,在人血小板生成12-羟基二十碳四烯酸(HETE)的过程中会相互作用。在这方面,向含有PLC的铜绿假单胞菌粗培养上清液中添加纯化的铜绿假单胞菌脂肪酶,可增强人血小板中具有趋化活性的12-HETE的生成。因此,我们分析了纯化的铜绿假单胞菌脂肪酶和纯化的溶血性铜绿假单胞菌PLC在人血小板、嗜中性粒细胞和嗜碱性粒细胞以及单核细胞释放炎症介质方面的相互作用。纯化的铜绿假单胞菌PLC可诱导人血小板生成12-HETE、白三烯B4(LTB4)和氧代谢产物,使人嗜中性粒细胞释放酶,使嗜碱性粒细胞释放组胺,但以剂量依赖的方式减少人单核细胞释放白细胞介素-8(IL-8),而纯化的脂肪酶本身则无此作用。添加纯化的脂肪酶可增强PLC诱导的12-HETE和LTB4的生成,不影响酶、组胺或IL-8的释放,但会减弱PLC诱导的化学发光反应。当使用产气荚膜梭菌的溶血性PLC代替铜绿假单胞菌PLC时,也得到了类似的结果。为了进行进一步比较,我们使用了明确的钙离子载体A23187和佛波醇-12-肉豆蔻酸酯-13-乙酸酯(PMA)作为刺激物。脂肪酶增强了钙离子载体诱导的LTB4生成和β-葡萄糖醛酸酶释放,但降低了钙离子载体诱导的和PMA诱导的化学发光。同时,我们分析了脂肪酶在含有PLC和脂肪酶的铜绿假单胞菌粗培养上清液中的作用。用脂肪酶特异性抑制剂十六烷基磺酰氟处理可抑制铜绿假单胞菌培养上清液中的脂肪酶活性,而PLC的活性不受影响。“脂肪酶失活培养上清液”诱导12-HETE和LTB4生成的能力降低了50%至100%。我们的结果表明,感染宿主中铜绿假单胞菌同时分泌脂肪酶和PLC可能会导致严重的病理效应,这无法用单个毒力因子对炎症效应细胞的单独作用来解释。

相似文献

4
Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent.
Infect Immun. 1990 Mar;58(3):659-66. doi: 10.1128/iai.58.3.659-666.1990.
5
In-vitro enhancement of leukotriene B4 receptor expression on human neutrophils by cefadroxil.
J Antimicrob Chemother. 1990 Apr;25(4):613-20. doi: 10.1093/jac/25.4.613.
7
Pore formation by the Escherichia coli alpha-hemolysin: role for mediator release from human inflammatory cells.
Infect Immun. 1994 Oct;62(10):4611-7. doi: 10.1128/iai.62.10.4611-4617.1994.

引用本文的文献

1
Exploring the Interplay between Nutrients, Bacteriophages, and Bacterial Lipases in Host- and Bacteria-mediated Pathogenesis.
Endocr Metab Immune Disord Drug Targets. 2024;24(8):930-945. doi: 10.2174/0118715303257321231024094904.
2
The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from .
Front Mol Biosci. 2022 Oct 24;9:1026724. doi: 10.3389/fmolb.2022.1026724. eCollection 2022.
4
Evolution of Subfamily I.1 Lipases in Pseudomonas aeruginosa.
Curr Microbiol. 2021 Sep;78(9):3494-3504. doi: 10.1007/s00284-021-02589-4. Epub 2021 Jul 19.
5
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.03089-20.
6
Identification and characterization of virulent Ah17 from infected in river Cauvery and in vitro evaluation of shrimp chitosan.
Food Sci Nutr. 2020 Jan 20;8(2):1272-1283. doi: 10.1002/fsn3.1416. eCollection 2020 Feb.
8
Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids.
Front Physiol. 2016 Feb 26;7:64. doi: 10.3389/fphys.2016.00064. eCollection 2016.
10
Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions.
PLoS One. 2013 Aug 13;8(8):e71845. doi: 10.1371/journal.pone.0071845. eCollection 2013.

本文引用的文献

2
5-Lipoxygenase.
Annu Rev Biochem. 1994;63:383-417. doi: 10.1146/annurev.bi.63.070194.002123.
6
Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa.
Infect Immun. 1981 Dec;34(3):1071-4. doi: 10.1128/iai.34.3.1071-1074.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验