Artru F
Département d'Anesthésie-Réanimation, Hôpital Neurologique et Neurochirurgical, Lyon.
Cah Anesthesiol. 1996;44(1):87-90.
The use of intraparenchymatous ICP sensor is becoming increasingly popular at the expense of the traditional intraventricular catheter method, in spite of the impossibility, with the former technic, to correct a possible zero drift. The decision to initiate or discontinue ICP monitoring is essentially based upon whether suggestive aspects of raised ICP are or not present on CT-scan. The degree of basal cisterns effacement is particularly informative. The same data from successive CT-scans are used to check the validity of the monitoring. Predefining critical levels of ICP and cerebral perfusion pressure (CPP) allows to establish practical guide-lines for treatment. Cerebral ischemia is considered very likely when ICP rises above 30 mmHg. Regarding CPP, the therapeutical goal is to avoid its reduction under the critical level of 60-80 mmHg. As these thresholds vary with the patients age and the type of lesion, a parallel evaluation of cerebral ischemia by other methods is mandatory. Transcranial doppler allows an easy detection of critical reduction of arterial flow. However, in case of flow hypervelocity, interpretation needs measurement of absolute cerebral blood flow values. Cerebral venous oxygen saturation monitoring, at the level of the jugular golf, shows desaturation episodes indicative of cerebral ischemia. Blood sampling for determination of arterial and jugular venous lactate concentrations allows calculation of the lactate oxygen index, a practical correlate of the degree of cerebral ischemia. ICP measurement alone is of limited value to understand the cerebral hemodynamical and metabolical situation in severe brain injury. Preceding the rise of ICP, there exists a compensation phase during which a progressive decrease of intracranial compliance is the important event. Even more earlier, posttraumatic cellular metabolic dysfunctions are to-day objectives for a neurochemical monitoring. Therefore a special technical and human environment has became mandatory to take a real benefit from ICP monitoring.
尽管使用脑实质内颅内压(ICP)传感器无法校正可能出现的零点漂移,但与传统的脑室内导管方法相比,其应用正变得越来越普遍。启动或停止ICP监测的决定主要基于CT扫描上是否存在ICP升高的提示性表现。基底池受压程度尤其具有参考价值。连续CT扫描的相同数据用于检查监测的有效性。预先设定ICP和脑灌注压(CPP)的临界值有助于制定实际的治疗指南。当ICP升至30 mmHg以上时,很可能会发生脑缺血。关于CPP,治疗目标是避免其降至60 - 80 mmHg的临界值以下。由于这些阈值会因患者年龄和病变类型而有所不同,因此必须通过其他方法对脑缺血进行平行评估。经颅多普勒检查能够轻松检测到动脉血流的临界降低。然而,在血流速度过快的情况下,解读需要测量绝对脑血流量值。在颈静脉球水平进行脑静脉血氧饱和度监测,可显示出提示脑缺血的血氧饱和度降低情况。通过采集血样测定动脉和颈静脉乳酸浓度,可计算乳酸氧指数,这是脑缺血程度的一个实际相关指标。仅测量ICP对于了解重型颅脑损伤时的脑血流动力学和代谢状况价值有限。在ICP升高之前,存在一个代偿期,在此期间颅内顺应性的逐渐降低是重要事件。甚至更早的时候,创伤后细胞代谢功能障碍如今已成为神经化学监测的目标。因此,为了真正从ICP监测中获益,必须具备特殊的技术和人员环境。