Suppr超能文献

产黄青霉质膜囊泡中的碱性氨基酸转运

Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.

作者信息

Hillenga D J, Versantvoort H J, Driessen A J, Konings W N

机构信息

Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands.

出版信息

J Bacteriol. 1996 Jul;178(14):3991-5. doi: 10.1128/jb.178.14.3991-3995.1996.

Abstract

The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumulated the basic amino acids arginine and lysine. Inhibition studies with analogs revealed a narrow substrate specificity. Within the external pH range of 5.5 to 7.5, the transmembrane electrical potential (delta psi) functions as the main driving force for uphill transport of arginine, although a low level of uptake was observed when only a transmembrane pH gradient was present. It is concluded that the basic amino acid permease is a H+ symporter. Quantitative analysis of the steady-state levels of arginine uptake in relation to the proton motive force suggests a H+-arginine symport stoichiometry of one to one. Efflux studies demonstrated that the basic amino acid permease functions in a reversible manner.

摘要

研究了丝状真菌产黄青霉基本氨基酸通透酶(系统VI)在与含有牛心线粒体细胞色素c氧化酶的脂质体融合的质膜中的特性。在还原型细胞色素c存在的情况下,杂种膜积累碱性氨基酸精氨酸和赖氨酸。用类似物进行的抑制研究揭示了狭窄的底物特异性。在外部pH值为5.5至7.5的范围内,跨膜电势(δψ)是精氨酸向上运输的主要驱动力,尽管当仅存在跨膜pH梯度时观察到低水平的摄取。得出的结论是,碱性氨基酸通透酶是一种H +同向转运体。对精氨酸摄取的稳态水平与质子动力的定量分析表明,H + -精氨酸同向转运化学计量比为1:1。流出研究表明,碱性氨基酸通透酶以可逆方式起作用。

相似文献

1
Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum.
J Bacteriol. 1996 Jul;178(14):3991-5. doi: 10.1128/jb.178.14.3991-3995.1996.
2
Transport of basic amino acids by membrane vesicles of Lactococcus lactis.
J Bacteriol. 1989 Mar;171(3):1453-8. doi: 10.1128/jb.171.3.1453-1458.1989.
3
Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum.
Eur J Biochem. 1994 Sep 1;224(2):581-7. doi: 10.1111/j.1432-1033.1994.t01-1-00581.x.
4
Sulfate transport in Penicillium chrysogenum plasma membranes.
J Bacteriol. 1996 Jul;178(13):3953-6. doi: 10.1128/jb.178.13.3953-3956.1996.
5
Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
Yeast. 1996 Sep 30;12(12):1263-72. doi: 10.1002/(SICI)1097-0061(19960930)12:12%3C1263::AID-YEA25%3E3.0.CO;2-A.
7
Control of the general amino acid permease of Penicillium chrysogenum by transinhibition and turnover.
Arch Biochem Biophys. 1973 Jan;154(1):387-99. doi: 10.1016/0003-9861(73)90071-4.
8
Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1.
Eur J Biochem. 1993 Feb 1;211(3):683-8. doi: 10.1111/j.1432-1033.1993.tb17596.x.
9
Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
J Bacteriol. 1991 Jan;173(2):791-800. doi: 10.1128/jb.173.2.791-800.1991.
10
Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum.
J Bacteriol. 1988 Feb;170(2):817-20. doi: 10.1128/jb.170.2.817-820.1988.

引用本文的文献

1
Fungal platform for direct chiral phosphonic building blocks production. Closer look on conversion pathway.
Appl Biochem Biotechnol. 2015 Feb;175(3):1403-11. doi: 10.1007/s12010-014-1356-6. Epub 2014 Nov 16.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1.
Eur J Biochem. 1993 Feb 1;211(3):683-8. doi: 10.1111/j.1432-1033.1993.tb17596.x.
3
Secondary solute transport in bacteria.
Biochim Biophys Acta. 1993 Nov 2;1183(1):5-39. doi: 10.1016/0005-2728(93)90003-x.
4
Regulatory and molecular aspects of mammalian amino acid transport.
Biochem J. 1994 Apr 15;299 ( Pt 2)(Pt 2):321-34. doi: 10.1042/bj2990321.
5
Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum.
Eur J Biochem. 1994 Sep 1;224(2):581-7. doi: 10.1111/j.1432-1033.1994.t01-1-00581.x.
6
Induction of penicillin biosynthesis by L-glutamate in penicillium chrysogenum.
Biochem Biophys Res Commun. 1982 Mar 15;105(1):172-8. doi: 10.1016/s0006-291x(82)80027-2.
7
Multiplicity and regulation of amino acid transport in Penicillium chrysogenum.
Arch Biochem Biophys. 1969 Feb;129(2):498-508. doi: 10.1016/0003-9861(69)90207-0.
8
Specificity of transinhibition of amino acid transport in neurospora.
Biochem Biophys Res Commun. 1971 Mar 5;42(5):940-7. doi: 10.1016/0006-291x(71)90521-3.
9
Amino acid transport in Neurospora crassa. II. Properties of a basic amino acid transport system.
Biochim Biophys Acta. 1970 Mar 17;203(1):139-49. doi: 10.1016/0005-2736(70)90044-1.
10
Acidic and basic amino acid transport systems of Penicillium chrysogenum.
Arch Biochem Biophys. 1971 May;144(1):168-83. doi: 10.1016/0003-9861(71)90466-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验