Devaux B, Meder J F, Missir O, Turak B, Dilouya A, Merienne L, Chodkiewicz J P, Fredy D
Service de Neurochirurgie, Centre Hospitalier Sainte-Anne, Paris.
J Neuroradiol. 1996 Jun;23(1):6-18.
The identification of the central region--i.e. the central sulcus, the pre- and post-central gyri, the paracentral lobule--on MRI and angiographic images may be necessary prior to stereotactic procedures such as biopsies or resection of centrally located tumors, depth electrode recordings for presurgical evaluation of drug-resistant epilepsies, or radiosurgery of arteriovenous malformations. Stereotactic methods, such as the Talairach's proportional grid based on the bicommissural system, demonstrated the statistical position of the central sulcus according to the Ac-Pc, Vac and Vpc baselines. However, the course and the spatial position of this sulcus have remarkable individual differences that sometimes make the sulcus difficult to identify on serial sagittal MRI or lateral angiographic images. In order to facilitate this identification, the authors propose a new oblique baseline, the rolandic (R) line.
The stereotactic MRI and angiography of 22 patients were reviewed for this study. Eleven of these patients had stereotactic biopsies for a low-grade tumor located in the central region, while eleven others had multiple intracerebral electrodes implantation and depth EEG recording (SEEG: stereoelectroencephalography) in the presurgical evaluation of drug-resistant partial epilepsy, prior to epileptogenic cortex resection. The Ac-Pc, Vac, Vpc baselines and segments of the central sulcus were drawn from the mid-sagittal and lateral T1-weighted MRI images and reported on an individual graph. Surface and deep margins as well as axis of the central sulcus were also reported along with corpus callosum baselines as defined by Olivier et al.: horizontal plane, anterior and posterior callosal planes. The rolandic line was then traced from the graph:it joined the intersection point between the anterior callosal plane and an orthogonal line passing through the floor of the temporal fossa, and the intersection point between posterior callosal plane and an orthogonal line passing through the top of the hemisphere. The rolandic line was then superimposed on any sagittal MRI image or lateral stereotactic angiographic film. Finally, the spatial position of electrode contracts through which electrical stimulations elicited motor and/or sensory responses, either from central electrode implanted for motor fibers identification prior to stereotactic biopsies or from SEEG electrodes implanted for epileptogenic zone identification and cortical mapping, was reported on the individual graph. Angular and linear measurements were taken from the graph, between the rolandic line, the central sulcus axis, the Ac-Pc and callosal baselines, and the central sulcus limits (top, bottom, anterior and posterior margins).
Graph measurements indicated that the rolandic line was significantly closer to the inferior part of the central sulcus than to its superior part (average distance between the line and the inferior point of the sulcus: 1.86 +/- 1.87 mm; average distance between the line and the superior point of the sulcus: 4.5 +/- 2.3 mm; p < 0.001-t test); similarly, the rolandic line was closer to the deep margin of the sulcus rather than to its superficial border (average distance between the line and the most anterior point of the sulcus: 11.43 +/- 3.16 mm; average distance between the line and the most posterior point of the sulcus: 7.95 +/- 4.14 mm; p < 0.01-t test). In 90% of the cases, the rolandic line followed the deep or middle part of the sulcus, with an average angle of 4.18 degrees +/- 2.53 degrees between the line and the sulcus axis. The spatial position of the electrode contacts that elicited motor/or sensory responses to stimulations correlated topographically well in all cases with the position of the motor and sensory fibers defined according to the central sulcus, baselines and reference to stereotactic atlases. (ABSTRACT TRUNCATED)
在进行立体定向手术(如活检或切除位于中枢的肿瘤、对耐药性癫痫进行术前评估的深度电极记录,或动静脉畸形的放射外科治疗)之前,可能需要在MRI和血管造影图像上识别中央区域,即中央沟、中央前回和中央后回、中央旁小叶。立体定向方法,如基于双连合系统的Talairach比例网格,根据前连合-后连合(Ac-Pc)、第三脑室前角(Vac)和第三脑室后角(Vpc)基线,展示了中央沟的统计位置。然而,这条沟的走行和空间位置存在显著的个体差异,这有时使得在连续矢状面MRI或外侧血管造影图像上难以识别该沟。为便于识别,作者提出了一条新的斜基线,即中央沟(R)线。
本研究回顾了22例患者的立体定向MRI和血管造影资料。其中11例患者因位于中央区域的低级别肿瘤接受了立体定向活检,另外11例患者在耐药性部分性癫痫的术前评估中,在致痫皮质切除术前进行了多次脑内电极植入和深度脑电图记录(立体定向脑电图:SEEG)。从矢状面和外侧T1加权MRI图像上绘制Ac-Pc、Vac、Vpc基线以及中央沟的节段,并记录在个体图表上。还报告了中央沟的表面和深部边界以及轴线,以及Olivier等人定义的胼胝体基线:水平面、胼胝体前平面和胼胝体后平面。然后从图表上描绘出中央沟线:它连接胼胝体前平面与穿过颞窝底部的垂直线的交点,以及胼胝体后平面与穿过半球顶部的垂直线的交点。然后将中央沟线叠加在任何矢状面MRI图像或外侧立体定向血管造影胶片上。最后,在个体图表上报告电极触点的空间位置,这些电极触点通过电刺激引发运动和/或感觉反应,这些电极触点要么来自为立体定向活检前识别运动纤维而植入的中央电极,要么来自为识别致痫区和皮质映射而植入的SEEG电极。从图表上进行角度和线性测量,测量中央沟线、中央沟轴线、Ac-Pc和胼胝体基线以及中央沟边界(顶部、底部、前部和后部边缘)之间的距离。
图表测量表明,中央沟线与中央沟下部的距离明显比与上部的距离更近(线与沟下部点之间的平均距离:1.86±1.87mm;线与沟上部点之间的平均距离:4.5±2.3mm;p<0.001 - t检验);同样,中央沟线更靠近沟的深部边界而非浅部边界(线与沟最前点之间的平均距离:11.43±3.16mm;线与沟最后点之间的平均距离:7.95±4.14mm;p<0.01 - t检验)。在90%的病例中,中央沟线沿着沟的深部或中部走行,线与沟轴线之间的平均角度为4.18°±2.53°。在所有病例中,引发运动/或感觉反应的电极触点的空间位置在地形上与根据中央沟、基线并参考立体定向图谱定义的运动和感觉纤维的位置相关性良好。(摘要截断)