Suppr超能文献

Molecular biology of somatostatin receptor subtypes.

作者信息

Patel Y C, Greenwood M, Panetta R, Hukovic N, Grigorakis S, Robertson L A, Srikant C B

机构信息

Fraser Laboratories, Department of Medicine, McGill University, Royal Victoria Hospital, Montreal, Canada.

出版信息

Metabolism. 1996 Aug;45(8 Suppl 1):31-8. doi: 10.1016/s0026-0495(96)90076-1.

Abstract

Somatostatin (SRIF) receptors (ssts) comprise a family of heptahelical membrane proteins encoded by five related genes that map to separate chromosomes and which, with the exception of sst1, are intronless. The ssts1-4 display weak selectivity for SRIF-14 binding, whereas sst5 is SRIF-28-selective. Based on structural similarity and reactivity for octapeptide and hexapeptide sst analogs, ssts2,3 and sst5 belong to a similar sst subclass; ssts1-4 react poorly with these analogs and belong to a separate subclass. All five ssts are functionally coupled to inhibition of adenylyl cyclase via pertussis toxin-sensitive guanosine triphosphate (GTP)-binding proteins. mRNA for ssts1-5 is widely expressed in brain and peripheral organs and displays an overlapping but characteristic pattern that is subtype-selective and tissue- and species-specific. All pituitary cell subsets express sst2 and sst5, with sst5 being more abundant. Individual pituitary cells coexpress multiple sst subtypes. The binding pocket for SRIF-14 ligand lies deep within the membrane in transmembrane domains (TMDs) 3 to 7. Except for extracellular loop 2, it does not involve the other exofacial structures. Human (h)sst2A and hsst5 undergo agonist-mediated desensitization, associated with receptor internalization. The C-tail segment of hsst5 displays positive molecular internalization signals. The ssts inhibit the growth of tumor cells directly, through blockade of mitogenic signaling leading to growth arrest and through induction of apoptosis. This process is associated with translocation of phosphotyrosine phosphatase (PTP) 1C from the cytosol to the membrane.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验