Suppr超能文献

离子通道与垂体信号转导

Ion channels and signaling in the pituitary gland.

机构信息

Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA.

出版信息

Endocr Rev. 2010 Dec;31(6):845-915. doi: 10.1210/er.2010-0005. Epub 2010 Jul 21.

Abstract

Endocrine pituitary cells are neuronlike; they express numerous voltage-gated sodium, calcium, potassium, and chloride channels and fire action potentials spontaneously, accompanied by a rise in intracellular calcium. In some cells, spontaneous electrical activity is sufficient to drive the intracellular calcium concentration above the threshold for stimulus-secretion and stimulus-transcription coupling. In others, the function of these action potentials is to maintain the cells in a responsive state with cytosolic calcium near, but below, the threshold level. Some pituitary cells also express gap junction channels, which could be used for intercellular Ca(2+) signaling in these cells. Endocrine cells also express extracellular ligand-gated ion channels, and their activation by hypothalamic and intrapituitary hormones leads to amplification of the pacemaking activity and facilitation of calcium influx and hormone release. These cells also express numerous G protein-coupled receptors, which can stimulate or silence electrical activity and action potential-dependent calcium influx and hormone release. Other members of this receptor family can activate calcium channels in the endoplasmic reticulum, leading to a cell type-specific modulation of electrical activity. This review summarizes recent findings in this field and our current understanding of the complex relationship between voltage-gated ion channels, ligand-gated ion channels, gap junction channels, and G protein-coupled receptors in pituitary cells.

摘要

内分泌垂体细胞类似神经元;它们表达多种电压门控钠离子、钙离子、钾离子和氯离子通道,并自发产生动作电位,伴随着细胞内钙离子的增加。在一些细胞中,自发的电活动足以使细胞内钙离子浓度超过刺激-分泌和刺激-转录偶联的阈值。在其他细胞中,这些动作电位的功能是使细胞保持在响应状态,细胞浆钙离子接近但低于阈值水平。一些垂体细胞还表达缝隙连接通道,这些通道可用于这些细胞之间的细胞间钙信号传递。内分泌细胞还表达细胞外配体门控离子通道,其被下丘脑和垂体内激素激活会导致起搏活动的放大以及钙内流和激素释放的促进。这些细胞还表达许多 G 蛋白偶联受体,其可以刺激或沉默电活动以及动作电位依赖性钙内流和激素释放。该受体家族的其他成员可以激活内质网中的钙通道,导致特定于细胞类型的电活动的调制。本综述总结了该领域的最新发现,以及我们目前对垂体细胞中电压门控离子通道、配体门控离子通道、缝隙连接通道和 G 蛋白偶联受体之间复杂关系的理解。

相似文献

1
Ion channels and signaling in the pituitary gland.
Endocr Rev. 2010 Dec;31(6):845-915. doi: 10.1210/er.2010-0005. Epub 2010 Jul 21.
2
Molecular mechanisms of pituitary endocrine cell calcium handling.
Cell Calcium. 2012 Mar-Apr;51(3-4):212-21. doi: 10.1016/j.ceca.2011.11.003. Epub 2011 Dec 3.
3
Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells.
Mol Cell Endocrinol. 2018 Mar 5;463:23-36. doi: 10.1016/j.mce.2017.06.022. Epub 2017 Jun 24.
4
Ion Channels of Pituitary Gonadotrophs and Their Roles in Signaling and Secretion.
Front Endocrinol (Lausanne). 2017 Jun 9;8:126. doi: 10.3389/fendo.2017.00126. eCollection 2017.
5
ZD7288 inhibits exocytosis in an HCN-independent manner and downstream of voltage-gated calcium influx in pituitary lactotrophs.
Biochem Biophys Res Commun. 2006 Aug 4;346(3):845-50. doi: 10.1016/j.bbrc.2006.05.194. Epub 2006 Jun 9.
8
The background sodium leak channel NALCN is a major controlling factor in pituitary cell excitability.
J Physiol. 2025 Jan;603(2):301-317. doi: 10.1113/JP284036. Epub 2024 Dec 2.
9
Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling.
Trends Endocrinol Metab. 2005 May-Jun;16(4):152-9. doi: 10.1016/j.tem.2005.03.003.
10
Pituitary cell type-specific electrical activity, calcium signaling and secretion.
Biol Res. 2006;39(3):403-23. doi: 10.4067/s0716-97602006000300004. Epub 2006 Nov 7.

引用本文的文献

3
The background sodium leak channel NALCN is a major controlling factor in pituitary cell excitability.
J Physiol. 2025 Jan;603(2):301-317. doi: 10.1113/JP284036. Epub 2024 Dec 2.
4
Distribution and calcium signaling function of somatostatin receptor subtypes in rat pituitary.
Cell Calcium. 2024 Dec;124:102967. doi: 10.1016/j.ceca.2024.102967. Epub 2024 Nov 2.
5
Differential gene expression and pathway analysis in growth hormone-secreting pituitary tumors according to granulation pattern.
Front Oncol. 2024 Jul 30;14:1423606. doi: 10.3389/fonc.2024.1423606. eCollection 2024.
7
Conversion of spikers to bursters in pituitary cell networks: Is it better to disperse for maximum exposure or circle the wagons?
PLoS Comput Biol. 2024 Jan 30;20(1):e1011811. doi: 10.1371/journal.pcbi.1011811. eCollection 2024 Jan.
9
Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array.
Adv Sci (Weinh). 2023 Aug;10(24):e2301925. doi: 10.1002/advs.202301925. Epub 2023 Jun 25.

本文引用的文献

1
Variations in the response of pituitary lactotrophs to oxytocin during the rat estrous cycle.
Endocrinology. 2010 Apr;151(4):1806-13. doi: 10.1210/en.2009-1267. Epub 2010 Feb 22.
3
Gonadotropin-releasing hormone inhibits ether-à-go-go-related gene K+ currents in mouse gonadotropes.
Endocrinology. 2010 Mar;151(3):1079-88. doi: 10.1210/en.2009-0718. Epub 2010 Jan 12.
4
Characterization of purinergic P2X4 receptor channels expressed in anterior pituitary cells.
Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E644-51. doi: 10.1152/ajpendo.00558.2009. Epub 2009 Dec 15.
6
Dependence of multidrug resistance protein-mediated cyclic nucleotide efflux on the background sodium conductance.
Mol Pharmacol. 2010 Feb;77(2):270-9. doi: 10.1124/mol.109.059386. Epub 2009 Nov 10.
7
Genetic regulation of pituitary gland development in human and mouse.
Endocr Rev. 2009 Dec;30(7):790-829. doi: 10.1210/er.2009-0008. Epub 2009 Oct 16.
8
Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery.
Pharmacol Rev. 2009 Sep;61(3):283-357. doi: 10.1124/pr.109.001370.
10
Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells.
Pflugers Arch. 2010 Feb;459(3):389-97. doi: 10.1007/s00424-009-0737-0. Epub 2009 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验